1000 resultados para MPPT Techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a careful evaluation among the most usual MPPT (Maximum Power Point Tracking) techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors. Firstly, the MPPT and boost converter models were implemented via MatLab/Simulink®, and after a DC to DC boost converter, digitally controlled, was implemented and connected to an Agilent Solar Array simulator, in order to validate the simulation results. The algorithms are digitally developed and the main experimental results are also presented from the implemented prototype. Furthermore, the experimental dynamic results and the computed tracking factors are presented. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a careful evaluation among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors, considering that the models are first implemented via MatLab/Simulink®, and after a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array simulator in order to verify the simulation results. The prototype was built, the algorithms are digitally developed and the main experimental results are also presented, including dynamic responses and the experimental tracking factor (TF) for the analyzed MPPT techniques. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents evaluations among the most usual maximum power point tracking (MPPT) techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel [tracking factor (TF)] in relation to the available power, PV voltage ripple, dynamic response, and use of sensors. Using MatLab/Simulink and dSPACE platforms, a digitally controlled boost dc-dc converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented for conventional MPPT algorithms and improved MPPT algorithms named IC based on proportional-integral (PI) and perturb and observe based on PI. Moreover, the dynamic response and the TF are also evaluated using a user-friendly interface, which is capable of online program power profiles and computes the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the considerable recent attention to distributed power generation and interest in sustainable energy, the integration of photovoltaic (PV) systems to grid-connected or isolated microgrids has become widespread. In order to maximize power output of PV system extensive research into control strategies for maximum power point tracking (MPPT) methods has been conducted. According to the robust, reliable, and fast performance of artificial intelligence-based MPPT methods, these approaches have been applied recently to various systems under different conditions. Given the diversity of recent advances to MPPT approaches a review focusing on the performance and reliability of these methods under diverse conditions is required. This paper reviews AI-based techniques proven to be effective and feasible to implement and very common in literature for MPPT, including their limitations and advantages. In order to support researchers in application of the reviewed techniques this study is not limited to reviewing the performance of recently adopted methods, rather discusses the background theory, application to MPPT systems, and important references relating to each method. It is envisioned that this review can be a valuable resource for researchers and engineers working with PV-based power systems to be able to access the basic theory behind each method, select the appropriate method according to project requirements, and implement MPPT systems to fulfill project objectives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 Photovoltaic based microgrid have been increasingly investigated in recent years, ascribable to their fundamental advantages such as the infinite energy source, environmentally friendly aspect and low upkeep cost. However, in practice, they are still considered as an expensive and low output option of renewable energy resources. To extract the maximum possible power from the output of the PV system, a reliable maximum power point tracker (MPPT) is required. Numerous studies have been conducted to introduce the best MPPT techniques suitable for different types of PV systems. However, they are mostly able to track the MPP from the PV system when the output signals (Voltage and Current) of individual array are available. In this study, a meta-heuristic method, based on particle swarm optimization theory, is used to determine the actual MPP of PV system, including several PV arrays, by only single current sensor at the output terminal. The results of the proposed PSO based technique, for tracking the global MPP in a multidimensional search space, have been presented at the end of this paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrical energy from photovoltaic panels (PV) has became an increasing viable alternative because of the great concern for environmental preservation and the possibility of the reduction of the conventional fuels, and this natural energy source is free, abundant and clean. In addition, Brazil is a privileged country because of the high levels of irradiation throughout its territory all over the year. Thus the exploitation of the energy from PV is one of the best alternatives to overcome the supply electrical energy issues. However, nowadays the energy conversion efficiency is low and the initial costs are high for these energy systems. Therefore, in order to increase the efficiency of these systems the extraction of the maximum power point (MPP) from PV is extremely necessary, and it is done using the maximum power point tracking (MPPT) techniques. The MPP of the PV varies non linearly with the environmental conditions and several MPPT techniques are available in literature, and this paper presents a careful comparison among the most usual techniques, doing meaningful comparisons with respect to the amount of energy extracted, PV voltage ripple, dynamic response and use of sensors, considering that the models are implemented via MatLab/Simulink®. © 2010 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maximum Power Point Tracking (MPPT) is an important concern in Photovoltaic (PV) systems. As PV systems have a high cost of energy it is essential that they are operated to extract the maximum possible power at all times. However, under non-uniform environmental conditions, which frequently arise in the outdoor environment, many MPPT techniques will fail to track the global peak power. This review paper discusses conventional MPPT techniques designed to operate under uniform environmental conditions and highlights why these techniques fail under non-uniform conditions. Following this, techniques designed specifically to operate under non-uniform environmental conditions are analysed and compared. Simulation results which compare the performance of the common Perturb and Observe (P&O) method, the Particle Swarm Optimisation (PSO) and the Simulated Annealing (SA) MPPT approaches under non-uniform environmental conditions are also presented. The research presented in this review indicates that there is no single technique which can achieve reliable global MPPT with low cost and complexity and be easily adapted to different PV systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents evaluations among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic panel (PV) (Tracking Factor - TF) in relation to the available power, PV voltage ripple, dynamic response and use of sensors. Using MatLab/Simulink® and DSpace platforms, a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented and a contribution in the implementation of the IC algorithm is performed and called IC based on PI. Moreover, the dynamic response and the tracking factor are also evaluated using a Friendly User Interface, which is capable of online program power curves and compute the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maximum power point tracking (MPPT) is an important consideration in photovoltaic (PV) systems. These systems exhibit variable nonlinear current–voltage (I–V) and power–voltage (P–V) characteristics which vary with environmental conditions. The optimum operation of a PV system occurs when the system operates at the unique maximum power point (MPP) for the given environmental conditions. Key environmental conditions include the irradiance on the cell, temperature of the cell and any shading phenomenon. Shading can occur due to objects, dust or dirt and module mismatch arising from damage or manufacturing tolerances. These shading effects introduce further nonlinearity into the I–V and P–V characteristics of the system. An extensive variety of MPPT techniques has been proposed which vary from simple estimation techniques to advanced tracking techniques. In this chapter, the criteria for assessing the performance of MPPT methods are defined followed by a complete description and discussion of both techniques designed for uniform environmental conditions and those designed for nonuniform environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the increasing world energy demand, renewable energy systems have been significantly applied in the power generation sector. Among the renewable energy options, photovoltaic system is one of the most popular resources which has been experiencing a huge attention during recent decades. The remarkable advantages, such as static and movement free characteristics, low maintenance costs, and longevity are the primary factors for the popularity of solar generation in the late years. Nevertheless, the low PV conversion efficiency in one side and high PV material cost in the other side have made PV generation comparably expensive system. Consequently, a capable maximum power point tracking (MPPT) is all important to elicit the maximum energy from the production of PV systems. Different researches have been conducted to design a fast, simple and robust MPPT technique under uniform conditions. However, due to the series and parallel connection of PV modules and according to the use of bypass diodes, in the structure of PV modules, a conventional techniques are unable to track a true MPP. Recently, several studies have been undertaken to modify these conventional methods and enable them to track the global MPP under rapidly changing environments and partial shading (PS) conditions. This report concentrates on the state of the art of these methods and their evolution to apply under PS conditions. The recent developments and modifications are analyzed through a comparison based on design complexity, cost, speed and the ability to track the MPP under rapid environmental variations and PS conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la última década la potencia instalada de energía solar fotovoltaica ha crecido una media de un 49% anual y se espera que alcance el 16%del consumo energético mundial en el año 2050. La mayor parte de estas instalaciones se corresponden con sistemas conectados a la red eléctrica y un amplio porcentaje de ellas son instalaciones domésticas o en edificios. En el mercado ya existen diferentes arquitecturas para este tipo de instalaciones, entre las que se encuentras los módulos AC. Un módulo AC consiste en un inversor, también conocido como micro-inversor, que se monta en la parte trasera de un panel o módulo fotovoltaico. Esta tecnología ofrece modularidad, redundancia y la extracción de la máxima potencia de cada panel solar de la instalación. Además, la expansión de esta tecnología posibilitará una reducción de costes asociados a las economías de escala y a la posibilidad de que el propio usuario pueda componer su propio sistema. Sin embargo, el micro-inversor debe ser capaz de proporcionar una ganancia de tensión adecuada para conectar el panel solar directamente a la red, mientras mantiene un rendimiento aceptable en un amplio rango de potencias. Asimismo, los estándares de conexión a red deber ser satisfechos y el tamaño y el tiempo de vida del micro-inversor son factores que han de tenerse siempre en cuenta. En esta tesis se propone un micro-inversor derivado de la topología “forward” controlado en el límite entre los modos de conducción continuo y discontinuo (BCM por sus siglas en inglés). El transformador de la topología propuesta mantiene la misma estructura que en el convertidor “forward” clásico y la utilización de interruptores bidireccionales en el secundario permite la conexión directa del inversor a la red. Asimismo el método de control elegido permite obtener factor de potencia cercano a la unidad con una implementación sencilla. En la tesis se presenta el principio de funcionamiento y los principales aspectos del diseño del micro-inversor propuesto. Con la idea de mantener una solución sencilla y de bajo coste, se ha seleccionado un controlador analógico que está originalmente pensado para controlar un corrector del factor de potencia en el mismo modo de conducción que el micro-inversor “forward”. La tesis presenta las principales modificaciones necesarias, con especial atención a la detección del cruce por cero de la corriente (ZCD por sus siglas en inglés) y la compatibilidad del controlador con la inclusión de un algoritmo de búsqueda del punto de máxima potencia (MPPT por sus siglas en inglés). Los resultados experimentales muestran las limitaciones de la implementación elegida e identifican al transformador como el principal contribuyente a las pérdidas del micro-inversor. El principal objetivo de esta tesis es contribuir a la aplicación de técnicas de control y diseño de sistemas multifase en micro-inversores fotovoltaicos. En esta tesis se van a considerar dos configuraciones multifase diferentes aplicadas al micro-inversor “forward” propuesto. La primera consiste en una variación con conexión paralelo-serie que permite la utilización de transformadores con una relación de vueltas baja, y por tanto bien acoplados, para conseguir una ganancia de tensión adecuada con un mejor rendimiento. Esta configuración emplea el mismo control BCM cuando la potencia extraída del panel solar es máxima. Este método de control implica que la frecuencia de conmutación se incrementa considerablemente cuando la potencia decrece, lo que compromete el rendimiento. Por lo tanto y con la intención de mantener unos bueno niveles de rendimiento ponderado, el micro-inversor funciona en modo de conducción discontinuo (DCM, por sus siglas en inglés) cuando la potencia extraía del panel solar es menor que la máxima. La segunda configuración multifase considerada en esta tesis es la aplicación de la técnica de paralelo con entrelazado. Además se han considerado dos técnicas diferentes para decidir el número de fases activas: dependiendo de la potencia continua extraída del panel solar y dependiendo de la potencia instantánea demandada por el micro-inversor. La aplicación de estas técnicas es interesante en los sistemas fotovoltaicos conectados a la red eléctrica por la posibilidad que brindan de obtener un rendimiento prácticamente plano en un amplio rango de potencia. Las configuraciones con entrelazado se controlan en DCM para evitar la necesidad de un control de corriente, lo que es importante cuando el número de fases es alto. Los núcleos adecuados para todas las configuraciones multifase consideradas se seleccionan usando el producto de áreas. Una vez seleccionados los núcleos se ha realizado un diseño detallado de cada uno de los transformadores. Con la información obtenida de los diseños y los resultados de simulación, se puede analizar el impacto que el número de transformadores utilizados tiene en el tamaño y el rendimiento de las distintas configuraciones. Los resultados de este análisis, presentado en esta tesis, se utilizan posteriormente para comparar las distintas configuraciones. Muchas otras topologías se han presentado en la literatura para abordar los diferentes aspectos a considerar en los micro-inversores, que han sido presentados anteriormente. La mayoría de estas topologías utilizan un transformador de alta frecuencia para solventar el salto de tensión y evitar problemas de seguridad y de puesta a tierra. En cualquier caso, es interesante evaluar si topologías sin aislamiento galvánico son aptas para su utilización como micro-inversores. En esta tesis se presenta una revisión de inversores con capacidad de elevar tensión, que se comparan bajo las mismas especificaciones. El objetivo es proporcionar la información necesaria para valorar si estas topologías son aplicables en los módulos AC. Las principales contribuciones de esta tesis son: • La aplicación del control BCM a un convertidor “forward” para obtener un micro-inversor de una etapa sencillo y de bajo coste. • La modificación de dicho micro-inversor con conexión paralelo-series de transformadores que permite reducir la corriente de los semiconductores y una ganancia de tensión adecuada con transformadores altamente acoplados. • La aplicación de técnicas de entrelazado y decisión de apagado de fases en la puesta en paralelo del micro-inversor “forward”. • El análisis y la comparación del efecto en el tamaño y el rendimiento del incremento del número de transformadores en las diferentes configuraciones multifase. • La eliminación de las medidas y los lazos de control de corriente en las topologías multifase con la utilización del modo de conducción discontinuo y un algoritmo MPPT sin necesidad de medida de corriente. • La recopilación y comparación bajo las mismas especificaciones de topologías inversoras con capacidad de elevar tensión, que pueden ser adecuadas para la utilización como micro-inversores. Esta tesis está estructurada en seis capítulos. El capítulo 1 presenta el marco en que se desarrolla la tesis así como el alcance de la misma. En el capítulo 2 se recopilan las topologías existentes de micro-invesores con aislamiento y aquellas sin aislamiento cuya implementación en un módulo AC es factible. Asimismo se presenta la comparación entre estas topologías bajo las mismas especificaciones. El capítulo 3 se centra en el micro-inversor “forward” que se propone originalmente en esta tesis. La aplicación de las técnicas multifase se aborda en los capítulos 4 y 5, en los que se presentan los análisis en función del número de transformadores. El capítulo está orientado a la propuesta paralelo-serie mientras que la configuración con entrelazado se analiza en el capítulo 5. Por último, en el capítulo 6 se presentan las contribuciones de esta tesis y los trabajos futuros. ABSTRACT In the last decade the photovoltaic (PV) installed power increased with an average growth of 49% per year and it is expected to cover the 16% of the global electricity consumption by 2050. Most of the installed PV power corresponds to grid-connected systems, with a significant percentage of residential installations. In these PV systems, the inverter is essential since it is the responsible of transferring into the grid the extracted power from the PV modules. Several architectures have been proposed for grid-connected residential PV systems, including the AC-module technology. An AC-module consists of an inverter, also known as micro-inverter, which is attached to a PV module. The AC-module technology offers modularity, redundancy and individual MPPT of each module. In addition, the expansion of this technology will enable the possibility of economies of scale of mass market and “plug and play” for the user, thus reducing the overall cost of the installation. However, the micro-inverter must be able to provide the required voltage boost to interface a low voltage PV module to the grid while keeping an acceptable efficiency in a wide power range. Furthermore, the quality standards must be satisfied and size and lifetime of the solutions must be always considered. In this thesis a single-stage forward micro-inverter with boundary mode operation is proposed to address the micro-inverter requirements. The transformer in the proposed topology remains as in the classic forward converter and bidirectional switches in the secondary side allows direct connection to the grid. In addition the selected control strategy allows high power factor current with a simple implementation. The operation of the topology is presented and the main design issues are introduced. With the intention to propose a simple and low-cost solution, an analog controller for a PFC operated in boundary mode is utilized. The main necessary modifications are discussed, with the focus on the zero current detection (ZCD) and the compatibility of the controller with a MPPT algorithm. The experimental results show the limitations of the selected analog controller implementation and the transformer is identified as a main losses contributor. The main objective of this thesis is to contribute in the application of control and design multiphase techniques to the PV micro-inverters. Two different multiphase configurations have been applied to the forward micro-inverter proposed in this thesis. The first one consists of a parallel-series connected variation which enables the use of low turns ratio, i.e. well coupled, transformers to achieve a proper voltage boost with an improved performance. This multiphase configuration implements BCM control at maximum load however. With this control method the switching frequency increases significantly for light load operation, thus jeopardizing the efficiency. Therefore, in order to keep acceptable weighted efficiency levels, DCM operation is selected for low power conditions. The second multiphase variation considered in this thesis is the interleaved configuration with two different phase shedding techniques: depending on the DC power extracted from the PV panel, and depending on the demanded instantaneous power. The application of interleaving techniques is interesting in PV grid-connected inverters for the possibility of flat efficiency behavior in a wide power range. The interleaved variations of the proposed forward micro-inverter are operated in DCM to avoid the current loop, which is important when the number of phases is large. The adequate transformer cores for all the multiphase configurations are selected according to the area product parameter and a detailed design of each required transformer is developed. With this information and simulation results, the impact in size and efficiency of the number of transformer used can be assessed. The considered multiphase topologies are compared in this thesis according to the results of the introduced analysis. Several other topological solutions have been proposed to solve the mentioned concerns in AC-module application. The most of these solutions use a high frequency transformer to boost the voltage and avoid grounding and safety issues. However, it is of interest to assess if the non-isolated topologies are suitable for AC-module application. In this thesis a review of transformerless step-up inverters is presented. The compiled topologies are compared using a set benchmark to provide the necessary information to assess whether non-isolated topologies are suitable for AC-module application. The main contributions of this thesis are: • The application of the boundary mode control with constant off-time to a forward converter, to obtain a simple and low-cost single-stage forward micro-inverter. • A modification of the forward micro-inverter with primary-parallel secondary-series connected transformers to reduce the current stress and improve the voltage gain with highly coupled transformers. •The application of the interleaved configuration with different phase shedding strategies to the proposed forward micro-inverter. • An analysis and comparison of the influence in size and efficiency of increasing the number of transformers in the parallel-series and interleaved multiphase configurations. • Elimination of the current loop and current measurements in the multiphase topologies by adopting DCM operation and a current sensorless MPPT. • A compilation and comparison with the same specifications of suitable non-isolated step-up inverters. This thesis is organized in six chapters. In Chapter 1 the background of single-phase PV-connected systems is discussed and the scope of the thesis is defined. Chapter 2 compiles the existing solutions for isolated micro-inverters and transformerless step-up inverters suitable for AC-module application. In addition, the most convenient non-isolated inverters are compared using a defined benchmark. Chapter 3 focuses on the originally proposed single-stage forward micro-inverter. The application of multiphase techniques is addressed in Chapter 4 and Chapter 5, and the impact in different parameters of increasing the number of phases is analyzed. In Chapter 4 an original primary-parallel secondary-series variation of the forward micro-inverter is presented, while Chapter 5 focuses on the application of the interleaved configuration. Finally, Chapter 6 discusses the contributions of the thesis and the future work.