1000 resultados para MPLS Networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic Engineering objective is to optimize network resource utilization. Although several works have been published about minimizing network resource utilization in MPLS networks, few of them have been focused in LSR label space reduction. This letter studies Asymmetric Merged Tunneling (AMT) as a new method for reducing the label space in MPLS network. The proposed method may be regarded as a combination of label merging (proposed in the MPLS architecture) and asymmetric tunneling (proposed recently in our previous works). Finally, simulation results are performed by comparing AMT with both ancestors. They show a great improvement in the label space reduction factor

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the configuration of multipoint-to-point connections (MP2P)-as a means of reducing label space in LSRs. We found two main drawbacks in this label space reduction a)it should be separately applied to a set of LSPs with the same egress LSR-which decreases the options for better reductions, and b)LSRs close to the edge of the network experience a greater label space reduction than those close to the core. The later implies that MP2P connections reduce the number of labels asymmetrically

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an optimized model to support QoS by mean of Congestion minimization on LSPs (Label Switching Path). In order to perform this model, we start from a CFA (Capacity and Flow Allocation) model. As this model does not consider the buffer size to calculate the capacity cost, our model- named BCA (Buffer Capacity Allocation)- take into account this issue and it improve the CFA performance. To test our proposal, we perform several simulations; results show that BCA model minimizes LSP congestion and uniformly distributes flows on the network

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic Engineering objective is to optimize network resource utilization. Although several works have been published about minimizing network resource utilization in MPLS networks, few of them have been focused in LSR label space reduction. This letter studies Asymmetric Merged Tunneling (AMT) as a new method for reducing the label space in MPLS network. The proposed method may be regarded as a combination of label merging (proposed in the MPLS architecture) and asymmetric tunneling (proposed recently in our previous works). Finally, simulation results are performed by comparing AMT with both ancestors. They show a great improvement in the label space reduction factor

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the configuration of multipoint-to-point connections (MP2P)-as a means of reducing label space in LSRs. We found two main drawbacks in this label space reduction a)it should be separately applied to a set of LSPs with the same egress LSR-which decreases the options for better reductions, and b)LSRs close to the edge of the network experience a greater label space reduction than those close to the core. The later implies that MP2P connections reduce the number of labels asymmetrically

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telecommunications networks have been always expanding and thanks to it, new services have appeared. The old mechanisms for carrying packets have become obsolete due to the new service requirements, which have begun working in real time. Real time traffic requires strict service guarantees. When this traffic is sent through the network, enough resources must be given in order to avoid delays and information losses. When browsing through the Internet and requesting web pages, data must be sent from a server to the user. If during the transmission there is any packet drop, the packet is sent again. For the end user, it does not matter if the webpage loads in one or two seconds more. But if the user is maintaining a conversation with a VoIP program, such as Skype, one or two seconds of delay in the conversation may be catastrophic, and none of them can understand the other. In order to provide support for this new services, the networks have to evolve. For this purpose MPLS and QoS were developed. MPLS is a packet carrying mechanism used in high performance telecommunication networks which directs and carries data using pre-established paths. Now, packets are forwarded on the basis of labels, making this process faster than routing the packets with the IP addresses. MPLS also supports Traffic Engineering (TE). This refers to the process of selecting the best paths for data traffic in order to balance the traffic load between the different links. In a network with multiple paths, routing algorithms calculate the shortest one, and most of the times all traffic is directed through it, causing overload and packet drops, without distributing the packets in the other paths that the network offers and do not have any traffic. But this is not enough in order to provide the real time traffic the guarantees it needs. In fact, those mechanisms improve the network, but they do not make changes in how the traffic is treated. That is why Quality of Service (QoS) was developed. Quality of service is the ability to provide different priority to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow. Traffic is distributed into different classes and each of them is treated differently, according to its Service Level Agreement (SLA). Traffic with the highest priority will have the preference over lower classes, but this does not mean it will monopolize all the resources. In order to achieve this goal, a set policies are defined to control and alter how the traffic flows. Possibilities are endless, and it depends in how the network must be structured. By using those mechanisms it is possible to provide the necessary guarantees to the real-time traffic, distributing it between categories inside the network and offering the best service for both real time data and non real time data. Las Redes de Telecomunicaciones siempre han estado en expansión y han propiciado la aparición de nuevos servicios. Los viejos mecanismos para transportar paquetes se han quedado obsoletos debido a las exigencias de los nuevos servicios, que han comenzado a operar en tiempo real. El tráfico en tiempo real requiere de unas estrictas garantías de servicio. Cuando este tráfico se envía a través de la red, necesita disponer de suficientes recursos para evitar retrasos y pérdidas de información. Cuando se navega por la red y se solicitan páginas web, los datos viajan desde un servidor hasta el usuario. Si durante la transmisión se pierde algún paquete, éste se vuelve a mandar de nuevo. Para el usuario final, no importa si la página tarda uno o dos segundos más en cargar. Ahora bien, si el usuario está manteniendo una conversación usando algún programa de VoIP (como por ejemplo Skype) uno o dos segundos de retardo en la conversación podrían ser catastróficos, y ninguno de los interlocutores sería capaz de entender al otro. Para poder dar soporte a estos nuevos servicios, las redes deben evolucionar. Para este propósito se han concebido MPLS y QoS MPLS es un mecanismo de transporte de paquetes que se usa en redes de telecomunicaciones de alto rendimiento que dirige y transporta los datos de acuerdo a caminos preestablecidos. Ahora los paquetes se encaminan en función de unas etiquetas, lo cual hace que sea mucho más rápido que encaminar los paquetes usando las direcciones IP. MPLS también soporta Ingeniería de Tráfico (TE). Consiste en seleccionar los mejores caminos para el tráfico de datos con el objetivo de balancear la carga entre los diferentes enlaces. En una red con múltiples caminos, los algoritmos de enrutamiento actuales calculan el camino más corto, y muchas veces el tráfico se dirige sólo por éste, saturando el canal, mientras que otras rutas se quedan completamente desocupadas. Ahora bien, esto no es suficiente para ofrecer al tráfico en tiempo real las garantías que necesita. De hecho, estos mecanismos mejoran la red, pero no realizan cambios a la hora de tratar el tráfico. Por esto es por lo que se ha desarrollado el concepto de Calidad de Servicio (QoS). La calidad de servicio es la capacidad para ofrecer diferentes prioridades a las diferentes aplicaciones, usuarios o flujos de datos, y para garantizar un cierto nivel de rendimiento en un flujo de datos. El tráfico se distribuye en diferentes clases y cada una de ellas se trata de forma diferente, de acuerdo a las especificaciones que se indiquen en su Contrato de Tráfico (SLA). EL tráfico con mayor prioridad tendrá preferencia sobre el resto, pero esto no significa que acapare la totalidad de los recursos. Para poder alcanzar estos objetivos se definen una serie de políticas para controlar y alterar el comportamiento del tráfico. Las posibilidades son inmensas dependiendo de cómo se quiera estructurar la red. Usando estos mecanismos se pueden proporcionar las garantías necesarias al tráfico en tiempo real, distribuyéndolo en categorías dentro de la red y ofreciendo el mejor servicio posible tanto a los datos en tiempo real como a los que no lo son.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of MPLS networks survivability analysis is considered in this paper. The survivability indexes are defined which take into account the specificity of MPLS networks and the algorithm of its estimation is elaborated. The problem of MPLS network structure optimization under the constraints on the survivability indexes is considered and the algorithm of its solution is suggested. The experimental investigations were carried out and their results are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

IP based networks still do not have the required degree of reliability required by new multimedia services, achieving such reliability will be crucial in the success or failure of the new Internet generation. Most of existing schemes for QoS routing do not take into consideration parameters concerning the quality of the protection, such as packet loss or restoration time. In this paper, we define a new paradigm to develop new protection strategies for building reliable MPLS networks, based on what we have called the network protection degree (NPD). This NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability and an a posteriori evaluation, the failure impact degree (FID), to determine the impact on the network in case of failure. Having mathematical formulated these components, we point out the most relevant components. Experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms to offer a certain degree of protection

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced

Relevância:

70.00% 70.00%

Publicador:

Resumo:

IP based networks still do not have the required degree of reliability required by new multimedia services, achieving such reliability will be crucial in the success or failure of the new Internet generation. Most of existing schemes for QoS routing do not take into consideration parameters concerning the quality of the protection, such as packet loss or restoration time. In this paper, we define a new paradigm to develop new protection strategies for building reliable MPLS networks, based on what we have called the network protection degree (NPD). This NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability and an a posteriori evaluation, the failure impact degree (FID), to determine the impact on the network in case of failure. Having mathematical formulated these components, we point out the most relevant components. Experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms to offer a certain degree of protection

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In previous work we proposed a multi-objective traffic engineering scheme (MHDB-S model) using different distribution trees to multicast several flows. In this paper, we propose a heuristic algorithm to create multiple point-to-multipoint (p2mp) LSPs based on the optimum sub-flow values obtained with our MHDB-S model. Moreover, a general problem for supporting multicasting in MPLS networks is the lack of labels. To reduce the number of labels used, a label space reduction algorithm solution is also considered

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In previous work we proposed a multi-objective traffic engineering scheme (MHDB-S model) using different distribution trees to multicast several flows. In this paper, we propose a heuristic algorithm to create multiple point-to-multipoint (p2mp) LSPs based on the optimum sub-flow values obtained with our MHDB-S model. Moreover, a general problem for supporting multicasting in MPLS networks is the lack of labels. To reduce the number of labels used, a label space reduction algorithm solution is also considered