881 resultados para MOUSE EMBRYOS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous teratocarcinomas are ovarian or testicular tumors which have their origins in germ cells. The tumors contain a disorganized array of benign differentiated cells as well as an undifferentiated population of malignant stem cells, the embryonal carcinoma or EC cells. These pluripotent stem cells in tissue culture share many properties with the transient pluripotent cells of the early embryo, and might therefore serve as models for the investigation of developmental events ill vitro. The property of EC cells of prime interest in this study is an in vivo phenomenon. Certain EC cell lines are known to be regulated ill vivo and to differentiate normally in association with normal embryonic cells, resulting in chimeric mice. These mice have two genetically distinct cell populations, one of which is derived from the originally malignant EC cells. This has usually been accomplished by injection of the EC cells into the Day 3 blastocyst. In this study, the interactions between earlier stage embryos and EC cells have been tested by aggregating clumps of EC cells with Day 2 embryos. The few previous aggregation studies produced a high degree of abnormality in chimeric embryos, but the EC cells employed had known chromosomal abnormalities. In this study, two diploid EC cell lines (P19 and Pi0) were aggregated with 2.5 day mouse embryos, and were found to behave quite differently in the embryonic environment. P19 containing aggregates generally resorbed early, and the few embryos recovered at midgestation were normal and non-chimeric. Pi0 containing aggregates survived in high numbers to midgestation, and the Pi0 cells were very successful in colonizing the embryo. All these embryos were chimeric, and the contribution by the EC cells to each chimera was very high. However, these heavily chimeric embryos were all abnormal. Blastocyst injection had previously produced some abnormal embryos with high Pl0 contributions in addition to the live born mice, which had lower EC contributions. This study now adds more support to the hypothesis that high EC contributions may be incompatible with normal development. The possibility that the abnormalities were due to the mixing of temporally asynchronous embryonic cell types in the aggregates was tested by aggregating normal pluripotent cells taken from 3.5 day embryos with 2.5 day embryos. Early embryo loss was very high, and histological studies showed that the majority of these embryos died by 6.5 days development. Some embryos escaped this early death such that some healthy chimeras were recovered, in contrast to recovery of abnormal chimeric embryos following Pl0-morula aggregations, and non-chimeric embryos following P19-morula aggregations. This somewhat surprising adverse effect on development following aggregation of normal cell types suggests that there are developmental difficulties associated with the mixing of asynchronous cell types in aggregates. However, the greater magnitude of the adverse effects when the aggregates contained tumor derived cells suggests that EC cells should not be considered the complete equivalent of the pluripotent cells of the early embryo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-computed tomography (μCT) has been successfully used to study the cardiovascular system of mouse embryos in situ. With the use of barium as a suitable contrast agent, blood vessels have been imaged and analysed quantitatively such as blood volume and vessel sizes on embryos of ages 14.5 to 16.5 days old. The advantage of using this imaging modality is that it has provided three dimensional information whilst leaving samples intact for further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin A and its derivatives, retinoic acid, tretinoin and isotretinoin, are currently used in dermatological treatments. The administration of high doses of this vitamin provokes congenital malformations in mice: cleft palate, maxillary and mandibular hypoplasia and total or partial fusion of the maxillary incisors. This study compares the tooth germs of the first maxillary and mandibular molars of fetal mice submitted to isotretinoin during organogenesis. Twelve 60-day-old female Mus musculus were divided into two groups on the 7th day of pregnancy: treated group--1 mg isotretinoin per kg body weight, dissolved in vegetable oil, was administered from the 7th to the 13th day of pregnancy; control group--vegetable oil in equivalent volume was administered orally for the same period. On the 16th day of pregnancy, the females were sacrificed, the fetuses were removed and their heads amputated. After standard laboratory procedures, 6-micron thick serial slices were stained with hematoxylin and eosin for optical microscopy examination. The results showed that both groups had closed palates with no reminiscence of epithelial cells; however, the first molar germs of the isotretinoin-treated animals showed delayed development compared to the control animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilizing both the TET-OFF and TET-ON systems in combination with transcriptional control elements of the Tie-2 gene, we have established a series of transgenic activator and responder mice for TET-regulated endothelial cell-specific transgene expression in double transgenic mouse embryos and in adult mice. TET-regulated expression of LacZ reporter genes could be achieved in virtually all endothelia in mid gestation stage mouse embryos. In contrast in adult mice, using the very same Tie-2 tTA activator mouse strain, we observed striking differences of TET-induced gene expression from various inducible expression constructs in different vascular beds. Non-endothelial expression was never detected. The prominent differences in completeness of TET-induced endothelial expression highlight the still underestimated critical role of the responder mouse lines for uniform TET-induced gene expression in heterogeneous cell populations such as endothelial cells. Interestingly, in double transgenic mice inducibly expressing several different adhesion molecules, no adverse effects were observed even though these proteins were robustly expressed on endothelial cells in adult tissues. These transgenic model systems provide versatile tools for the TET-regulated manipulation of endothelial cell-specific gene expression in the entire embryonic vasculature and distinct vascular beds in adult mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal degeneration causes vision impairment and blindness in humans. If one day we are to harness the potential of stem cell-based cell replacement therapies to treat these conditions, it is imperative that we better understand normal retina development. Currently, the genes and mechanisms that regulate the specification of the neuroretina during vertebrate eye development remain unknown. Here, we identify sine oculis-related homeobox 3 (Six3) as a crucial player in this process in mice. In Six3 conditional-mutant mouse embryos, specification of the neuroretina was abrogated, but that of the retinal pigmented epithelium was normal. Conditional deletion of Six3 did not affect the initial development of the optic vesicle but did arrest subsequent neuroretina specification. Ectopic rostral expansion of Wnt8b expression was the major response to Six3 deletion and the leading cause for the specific lack of neuroretina, as ectopic Wnt8b expression in transgenic embryos was sufficient to suppress neuroretina specification. Using chromatin immunoprecipitation assays, we identified Six3-responsive elements in the Wnt8b locus and demonstrated that Six3 directly repressed Wnt8b expression in vivo. Our findings provide a molecular framework to the program leading to neuroretina differentiation and may be relevant for the development of novel strategies aimed at characterizing and eventually treating different abnormalities in eye formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the role of intracellular Ca2+ in compaction, the first morphogenetic event in embryogenesis, we analyzed preimplantation mouse embryos under several decompacting conditions, including depletion of extracellular Ca2+, blocking of Ca2+ channels, and inhibition of microfilaments, calmodulin, and intracellular Ca2+ release. Those treatments induced decompaction of mouse morulae and simultaneously induced changes in cytosolic free Ca2+ concentration and deregionalization of E-cadherin and fodrin. When morulae were allowed to recompact, the location of both proteins recovered. In contrast, actin did not change its cortical location with compaction nor with decompaction-recompaction. Calmodulin localized in areas opposite to cell–cell contacts in eight-cell stage embryos before and after compaction. Inhibition of calmodulin with trifluoperazine induced its delocalization while morulae decompacted. A nonspecific rise of intracellular free Ca2+ provoked by ionomycin did not affect the compacted shape. Moreover, the same decompacting treatments when applied to uncompacted embryos did not produce any change in intracellular Ca2+. Our results demonstrate that in preimplantation mouse embryos experimentally induced stage-specific changes of cell shape are accompanied by changes of intracellular free Ca2+ and redistribution of the cytoskeleton-related proteins E-cadherin, fodrin, and calmodulin. We conclude that intracellular Ca2+ specifically is involved in compaction and probably regulates the function and localization of cytoskeleton elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol acts as a teratogen in developing fetuses causing abnormalities of the brain, heart, craniofacial bones, and limb skeletal elements. To assess whether some teratogenic actions of ethanol might occur via dysregulation of msx2 expression, we examined msx2 expression in developing mouse embryos exposed to ethanol on embryonic day (E) 8 of gestation and subjected to whole mount in situ hybridization on E11–11.5 using a riboprobe for mouse msx2. Control mice exhibited expression of msx2 in developing brain, the developing limb buds and apical ectodermal ridge, the lateral and nasal processes, olfactory pit, palatal shelf of the maxilla, the eye, the lens of the eye, otic vesicle, prevertebral bodies (notochord), and endocardial cushion. Embryos exposed to ethanol in utero were significantly smaller than their normal counterparts and did not exhibit expression of msx2 in any structures. Similarly, msx2 expression, as determined by reverse transcription–PCR and Northern blot hybridization, was reduced ≈40–50% in fetal mouse calvarial osteoblastic cells exposed to 1% ethanol for 48 hr while alkaline phosphatase was increased by 2-fold and bone morphogenetic protein showed essentially no change. Transcriptional activity of the msx2 promoter was specifically suppressed by alcohol in MC3T3-E1 osteoblasts. Taken together, these data demonstrate that fetal alcohol exposure decreases msx2 expression, a known regulator of osteoblast and myoblast differentiation, and suggest that one of the “putative” mechanisms for fetal alcohol syndrome is the inhibition of msx2 expression during key developmental periods leading to developmental retardation, altered craniofacial morphogenesis, and cardiac defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages. In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose–response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40–50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GH. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription–PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X chromosome-linked transcription factor GATA-1 is expressed specifically in erythroid, mast, megakaryocyte, and eosinophil lineages, as well as in hematopoietic progenitors. Prior studies revealed that gene-disrupted GATA-1- embryonic stem cells give rise to adult (or definitive) erythroid precursors arrested at the proerythroblast stage in vitro and fail to contribute to adult red blood cells in chimeric mice but did not clarify a role in embryonic (or yolk sac derived) erythroid cells. To examine the consequences of GATA-1 loss on embryonic erythropoiesis in vivo, we inactivated the GATA-1 locus in embryonic stem cells by gene targeting and transmitted the mutated allele through the mouse germ line. Male GATA-1- embryos die between embryonic day 10.5 and 11.5 (E10.5-E11.5) of gestation. At E9.5, GATA-1- embryos exhibit extreme pallor yet contain embryonic erythroid cells arrested at an early proerythroblast-like stage of their development. Embryos stain weakly with benzidine reagent, and yolk sac cells express globin RNAs, indicating globin gene activation in the absence of GATA-1. Female heterozygotes (GATA-1+/-) are born pale due to random inactivation of the X chromosome bearing the normal allele. However, these mice recover during the neonatal period, presumably as a result of in vivo selection for progenitors able to express GATA-1. Our findings conclusively establish the essential role for GATA-1 in erythropoiesis within the context of the intact developing mouse and further demonstrate that the block to cellular maturation is similar in GATA-1- embryonic and definitive erythroid precursors. Moreover, the recovery of GATA-1+/- mice from anemia seen at birth provides evidence indicating a role for GATA-1 at the hematopoietic progenitor cell level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of the hormone erythropoietin and its receptor (EpoR) is though to be required for normal hematopoiesis. To define the role of EpoR in this process, the murine EpoR was disrupted by homologous recombination. Mice lacking the EpoR died in utero at embryonic day 11-12.5 with severe anemia. Embryonic erythropoiesis was markedly diminished, while fetal liver hematopoiesis was blocked at the proerythroblast stage. Other cell types known to express EpoR, including megakaryocytes, mast, and neural cells were morphologically normal. Reverse transcription-coupled PCR analysis of RNA from embryonic yolk sac, peripheral blood, and fetal liver demonstrated near normal transcripts levels for EKLF, thrombopoietin (Tpo), c-MPL, GATA-1, GATA-2, and alpha- and embryonic beta H1-globin but non for adult beta maj-globin. While colony-forming unit-erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) colonies were not present in cultures derived from EpoR-/- liver or yolk sac cells, hemoglobin-containing BFU-E colonies were detected in cultures treated with recombinant Tpo and Kit ligand or with Tpo and interleukin 3 and 11. Rescued BFU-E colonies expressed adult beta-globin and c-MPL and appeared morphologically normal. Thus, erythroid progenitors are formed in vivo in mice lacking the EpoR, and our studies demonstrate that a signal transmitted through the Tpo receptor c-MPL stimulates proliferation and terminal differentiation of these progenitors in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presomitic and 3- to 12-somite pair cultured mouse embryos were deprived of retinoic acid (RA) by yolk-sac injections of antisense oligodeoxynucleotides for retinol binding protein (RBP). Inhibition of yolk-sac RBP synthesis was verified by immunohistochemistry, and the loss of activity of a lacZ-coupled RA-sensitive promoter demonstrated that embryos rapidly became RA-deficient. This deficiency resulted in malformations of the vitelline vessels, cranial neural tube, and eye, depending upon the stage of embryonic development at the time of antisense injection. Addition of RA to the culture medium at the time of antisense injection restored normal development implicating the role of RBP in embryonic RA synthesis. Furthermore, the induced RA deficiency resulted in early down-regulation of developmentally important genes including TGF-beta1 and Shh.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^