989 resultados para MONTMORILLONITE CLAY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ polymerization of aniline is done inside the pillared clay matrix. The nonswellable pillared clay confined matrix allows efficient polymerization that leads to nanofibrous morphology. As a result high polymer order and crystallinity is attained and is evident from XRD patterns. The strong interaction between the clay layers and polyaniline (PANI) is understood from FTIR and DRS spectra. Additionally these analytical results suggest that the prepared PANI is in the doped state. The PANI/pillared clay nanocomposite formation gives additional thermal stability to the polymer backbone and is clear from the DTG curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonance Raman, FTIR, X-ray diffraction, UV-vis-NIR, electron paramagnetic resonance, X-ray absorption at Si K-edge and electron microscopy were employed for characterizing the products formed through electrochemical oxidation of intercalated anilinium ions inside the cationic montmorillonite (MMT) clay. The layer silicate structure was not affected by the anilinium oxidation between the layers. The intercalated products present only an electronic absorption band at 400 nm, very low conductivity (ca. 10(-7) S cm(-1)) and their Raman spectrum displays bands, with high relative intensities, assigned to the benzidine dication, indicating that this product was formed in high amount. Nevertheless, bands that can be correlated to phenazine-like segments and 1,4-phenylenediamine repeat units (PANI like segments) are also observed. The very low EPR signal indicates that diamagnetic species are predominant. All results are compared to those obtained by anilinium-MMT chemically oxidized by persulfate and the differences are pointed out. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synergistic reinforcement and deformation of polyvinyl alcohol (PVA)/graphene/montmorillonite clay (MMT) composites with the tensile properties being improved greatly. Particularly, the tensile strength and modulus of PVA composite with 0.9 wt% graphene and 0.3 wt% of MMT were improved by more than 58% and 43% when compared to the neat PVA, respectively, and were at least 10% higher than the enhanced sum of dual PVA composites with 0.9 wt% graphene and 0.3 wt% MMT. This reinforcement was resulted from the good dispersion and effective interfacial interactions as confirmed from morphology investigation, increased glass transition temperature and the shift of O-H stretching. When there were no fillers i.e. in situ reduced graphene (IRG) or MMT or their loading was low, high alignment of PVA could be observed, with increased crystallinity, melting point, lamellae thickness but narrowed crystallite size distribution. The synergistic reinforcement of PVA achieved from combined incorporation of IRG and MMT will pave the way for the development of stronger PVA composites in various applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composite montmorillonite-8-hydroxyquinoline (Swy-1-8-HQ) was prepared by two different processes and studied by using thermogravimetric analysis (TG/DTG and DSC), as well as helpful techniques as fluorescence in the UV-visible region and X-ray diffraction. The composites developed fluorescent appearance, however with quantum poor efficiency and they exhibited distinct TG and DSC thermal behavior. The fluorescence data of spectra associated to the TG/DT curves allowed to suggest that the 8-HQ was present in the composites in two different circumstances: 1 - intercalated in the interlayer spaces (Swy-1-8-HQ2), rigidly associated to the Substrate feasible as a monolayer with the aromatic rings parallel to the silica layer; and/or, 2 - adsorbed on the Surface (Swy-1-8-HQ1), either as a bilayer formation or tilting of the molecules to the silicate layer sheet. All results confirmed above are in agreement with X-ray diffraction patterns, once the interlayer space increases when 8-HQ is incorporated. The experimental results confirm the formation of the composites in agreement with the method used in the preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and dynamics of methane in hydrated potassium montmorillonite clay have been studied under conditions encountered in sedimentary basin and compared to those of hydrated sodium montmorillonite clay using computer simulation techniques. The simulated systems contain two molecular layers of water and followed gradients of 150 barkm-1 and 30 Kkm-1 up to a maximum burial depth of 6 km. Methane particle is coordinated to about 19 oxygen atoms, with 6 of these coming from the clay surface oxygen. Potassium ions tend to move away from the center towards the clay surface, in contrast to the behavior observed with the hydrated sodium form. The clay surface affinity for methane was found to be higher in the hydrated K-form. Methane diffusion in the two-layer hydrated K-montmorillonite increases from 0.39×10-9 m2s-1 at 280 K to 3.27×10-9 m2s-1 at 460 K compared to 0.36×10-9 m2s-1 at 280 K to 4.26×10-9 m2s-1 at 460 K in Na-montmorillonite hydrate. The distributions of the potassium ions were found to vary in the hydrates when compared to those of sodium form. Water molecules were also found to be very mobile in the potassium clay hydrates compared to sodium clay hydrates. © 2004 Elsevier Inc. All All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulation has been used to study the structure and dynamics of methane in hydrated sodium montmorillonite clays under conditions encountered in sedimentary basins. Systems containing approximately one, two, three and four molecular layers of water have followed gradients of 150 bar km-1 and 30Kkm-1, to a maximum burial depth of 6 km (900 bar and 460 K). Methane is coordinated to approximately 19 oxygen atoms, of which typically 6 are provided by the clay surface. Only in the three- and four-layer hydrates is methane able to leave the clay surface. Diffusion depends strongly on the porosity (water content) and burial depth: self-diffusion coefficients are in the range 0.12 × 10-9m2s-1 for water and 0.04 × 10−9m2s−1 < D < 8.64 × 10−9m2s−1 for methane. Bearing in mind that porosity decreases with burial depth, it is estimated that maximum diffusion occurs at around 3 km. This is in good agreement with the known location of methane reservoirs in sedimentary basins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134-840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide (C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1-7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1.0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymer-clay nanocomposite (PCN) materials were prepared by intercalation of an alkyl-ammonium ion spacing/coupling agent and a polymer between the planar layers of a swellable-layered material, such as montmorillonite (MMT). The nanocomposite lithium polymer electrolytes comprising such PCN materials and/or a dielectric solution (propylene carbonate) were prepared and discussed. The chemical composition of the nanocomposite materials was determined with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which revealed that the alkyl-ammonium ion successfully intercalated the layer of MMT clay, and thus copolymer poly(vinylidene fluoride-hexafluoropropylene) entered the galleries of montmorillonite clay. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of the lithium polymer electrolyte. Equivalent circuits were proposed to fit the EIS data successfully, and the significant contribution from MMT was thus identified. The resulting polymer electrolytes show high ionic conductivity up to 10(-3) S cm(-1) after felling with propylene carbonate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and Nd-143/Nd-144. Montmorillonite/illite ratio (M/I ratio), total REE contents (Sigma REE), LREE/HREE ratio and cerium anomaly (delta Ce) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio > 1, delta Ce < 0.85, Sigma REE > 400 mu g/g, LREE/HREE ratio approximate to 4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio < 1, delta Ce=0.86 to 1.5, Sigma REE=200 to 350 mu g/g, LREE/HREE ratio approximate to 6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The Nd-143/Nd-144 ratios or epsilon(Nd) values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to epsilon(Nd) values. Terrigenous clay minerals of type I with the eNd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type 11 with the epsilon(Nd) Values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with epsilon(Nd) values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with epsilon(Nd) values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper discusses the sustainable performance of geosynthetic clay liners (GCLs) which are popularly specified as “leachate retaining” or as “water proofing” membranes in the geo-environmental construction industry. Geosynthetic clay liners (GCLs) are composite matting comprising of bentonite clay with two covering geosynthetics. These are innovative labour saving construction material, developed over the last three decades. The paper outlines the variety of Geosynthetic Clay Liners (GCLs) can be classified essentially into two distinctly different forms viz; (a) air dry (< 8% m/c) with granular or powdered bentonite or (b) bentonite cake factory prehydrated to a moisture content (~40% m/c) beyond its shrinkage limit and vacuum extruded as a clay cake to enhance its sustainable performance. The dominant mineral in bentonite clay is the three-layered (2:1) clay mineral montmorillonite. High quality bentonites need to be used in the GCL manufacture. Sodium montmorillonite has the desired characteristic of high swelling capacity, high cation exchange capacity and the consequently very low hydraulic conductivity, providing the basis for the hydraulic sealing medium in GCLs. These encapsulate the active montmorillonite clay minerals which depend on the water and chemical balance between the sealing element and the surrounding geo environment. Quantitative mineralogical analyses and an assessment of the adsorbed cation regime, diffusion coefficients and clay leachate compatibility must necessarily be an integral part of the site appraisal to ensure acceptable long term sustainability and performance. Factors influencing the desired performance of bentonite in the GCLs placed in difficult construction and hostile chemical environments are discussed in this paper. Accordingly, the performance specifications for GCLs are identified and the appropriateness of enhancing the cation exchange capacity with polymer treatment and the need for factory prehydration of the untreated sodium bentonite is emphasised. The advantage of factory prehydrating the polymer treated bentonite to fluid content beyond its shrinkage limit and subsequently factory processing it to develop laminated clay is to develop a GCL that has enviable sealing characteristics with a greater resistance to geochemical attack and cracking. Since clay liners are buried in the ground as base liners, capping layer or as structural water proofing membrane, they can easily avoid strict quality and performance monitoring being “out of sight, out of mind!”. It is very necessary that barrier design for leachate containment must necessarily be in accordance with legislative requirement Assessment of long term hydraulic conductivities and clay-leachate compatibility assessment is deemed necessary. The derogatory factors affecting the sustainable performance of the bentonite in GCLs placed in difficult construction and hostile chemical environments are discussed. Sustainability concepts incorporated in waste management practice must aim to achieve 100% recycling and fully implement the handling of solid waste in developing countries with relatively lower labour costs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dimethylacetals of ketones; cyclohexanone, acetophenone, and benzophenone have been prepared by reacting ketones with methanol under mild reaction conditions. Large pore zeolites (H-Y and its rare earth metal, Ce3+, La3+, and RE3+ modified forms), and mesoporous clay (K-10 montmorillonite and its cerium exchanged counterpart) with regular pore structure, silica and silica-alumina have been used as catalysts. Clay catalysts are found to be much more active than zeolites, thanks to slightly bigger pore size. The nature of the pores of the solid acid catalysts determine acetalization efficiency of a particular catalyst. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolites than over the clays. Carrying out the reaction with ketones of different molecular sizes it is shown that K-10 clays and rare earth exchanged H-Y zeolites are promising environmentally friendly catalysts for their use in the production fine chemicals.