528 resultados para MONOLAYERS
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bidirectional transport studies were conducted using Caco-2, MDCK, and MDCK-MDR1 to determine P-gp influences in lamivudine and zidovudine permeability and evaluate if zidovudine permeability changes with the increase of zidovudine concentration and/or by association of lamivudine. Transport of lamivudine and zidovudine separated and coadministrated across monolayers based on these cells were quantified using LC-MS-MS. Drug efflux by P-gp was inhibited using GG918. Bidirectional transport of lamivudine and zidovudine was performed across MDCK-MDR1 and Caco-2 cells. Statistically significant transport decrease in B -> A direction was observed using MDCK-MDR1 for zidovudine and MDCK-MDR1 and Caco-2 for lamivudine. Results show increased transport in B -> A and A -> B directions as concentration increases but data from P(app) increase in both directions for both drugs in Caco-2, decrease in MDCK, and does not change significantly in MDCK-MDR1. Zidovudine transport in A -> B direction increases when coadministrated with increasing lamivudine concentration but does not change significantly in B -> A direction. Zidovudine and lamivudine are P-gp substrates, but results assume that P-gp does not affect significantly lamivudine and zidovudine. Their transport in monolayers based on Caco-2 cells increase proportionally to concentration (in both directions) and zidovudine transport in Caco-2 cell monolayer does not show significant changes with lamivudine increasing concentrations. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4413-4419, 2009
Resumo:
Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In studying the penetration of water-soluble surfactants into water-insoluble monolayers the main theoretical problem is to find a relationship that would enable the amount of surfactant that has entered the monolayer to be calculated from a set of equilibrium surface pressure-area isotherms. Despite many attempts, no current theory gives satisfactory results when applied to experimental data (Langmuir 14 (1998) 2148). One possible reason is that equilibrium had not been established when the surface pressure-area curves were measured. The three experiments reported here suggest that equilibrium is extremely difficult to establish in such systems when the area is low or the surface pressure is high. The essence of these experiments is to try to reach the same final condition by two different routes. In the first route, the one nearly always used in equilibrium penetration measurements, the surfactant is injected under the expanded monolayer, which is then slowly compressed in steps, with time allowed at each step for a steady surface pressure to be attained. In the second procedure, the monolayer is first compressed to a high surface pressure and the surfactant then injected. A stepped expansion isotherm may then be observed. Surface pressure-area per monolayer molecule isotherms, reflection spectra, and slow neutron reflectivity data all show the same pattern: if the surfactant was allowed to penetrate while the monolayer was in an expanded state, it was not completely removed when the monolayer was compressed; but if the monolayer was in a highly compressed state when exposed to the surfactant little penetration took place until the film was expanded. There thus appear to be very large energy barriers to the ejection of surfactant from a compressed monolayer and to the penetration of surfactant into a compressed monolayer. Although these experiments have some limitations, it now seems likely that at least some of the penetration data used in evaluating the various thermodynamic treatments of equilibrium penetration were not equilibrium data. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The structures of mixed Langmuir (floating) monolayers and Langmuir-Blodgett (LB) films of a phenanthroline-porphyrin with cadmium arachidate (PhenPor + CdAr) have been investigated by synchrotron X-ray grazing incidence diffraction (GIXD) and specular X-ray reflectivity (SXR). GIXD measurements of the floating monolayers showed only one peak, arising from the CdAr domains in the films, at a scattering angle of 21.5 degrees. This is consistent with a hexagonal structure (alpha = 4.77 Angstrom). The correlation length in these domains is 250 Angstrom. GMD measurements of the LB films, however, show two sets of diffraction features: one arises from CdAr domains with a rectangular in-plane structure (alpha = 7.44 Angstrom and b = 4.90 Angstrom) and a correlation length of 85 Angstrom; the other is from porphyrin domains with an oblique in-plane structure (alpha (p) 15.2 Angstrom, b(p) = 8.86 Angstrom, and gamma (p) = 80 degrees) and a correlation length of 105 Angstrom. These dimensions are consistent with the surface pressure-area isotherm measurements and indicate that the two components are immiscible. The thickness of the bilayer is 57 Angstrom, and there is no correlation between the bilayers. Introduction of a trigger compound does not alter the structure of the films but slightly increases the bilayer thickness. The SXR measurements of the floating monolayers also support the suggested immiscibility of the two components in the films.
Resumo:
Langmuir monolayer films of the tetracationic porphyrin tetrakis(octadecyl-4-pyridin ium)porphyrinatozinc(II) bromide on various salt containing subphases were analyzed using surface pressure-area isotherms and X-ray reflectivity. The use of these complementary techniques showed that the porphyrin molecules undergo changes in conformation upon compression. Two main phases were identified, one in which the porphyrin moiety is parallel to the subphase and one in which the porphyrin moiety is tilted out of the plane. The addition of different salts into the subphase brought about changes in film behaviour, which are explained in terms of a lyotropic series. Copyright (C) 2002 Society of Porphyrins,& Phthalocyanines.
Resumo:
The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.
Resumo:
Considering the possibility that invasiveness could be a neglected factor of virulence in Vibrio fluvialis-linked enteritis, since a dysenteric form of the disease was seen in Bangladesh, we studied 12 Brazilian strains of the organism, six clinical and six environmental, to determine whether they might be able to enter into HeLa cell monolayers or would carry plasmids incidentally involved in invasiveness. Four human and two environmental isolates attached to but did not enter into the cells. Though five strains harbored plasmids,no relationship was found between the carriage of these genetic elements and adhesiveness.
Resumo:
BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.
Resumo:
We describe a method for culturing over 90% pure bovine macrophages from peripheral blood mononuclear cells separated with Nycoprep. The cells were cultured for 12 days and then stained with esterase and with anti CD14 to test for purity. The method is reproducible and ensures an adequate number of cells for immunological research. Additionally, we report the unexpected finding of Trypanosoma trypomastigotes in our macrophage cultures from bovines belonging to a geographic area from which no bovine trypanosomes had been reported before.
Resumo:
The two exotoxins A and B produced by Clostridium difficile are responsible for antibiotic-associated enterocolitis in human and animals. When added apically to human colonic carcinoma-derived T84 cell monolayers, toxin A, but not toxin B, abolished the transepithelial electrical resistance and altered the morphological integrity. Apical addition of suboptimal concentration of toxin A made the cell monolayer sensitive to toxin B. Both toxins induced drastic and rapid epithelial alterations when applied basolaterally with a complete disorganization of tight junctions and vacuolization of the cells. Toxin A-specific IgG2a from hybridoma PCG-4 added apically with toxin A alone or in combination with toxin B abolished the toxin-induced epithelial alterations for up to 8 h. The Ab neutralized basolateral toxin A for 4 h, but not the mixture of the two toxins. Using an identical Ab:Ag ratio, we found that recombinant polymeric IgA (IgAd/p) with the same Fv fragments extended protection against toxin A for at least 24 h in both compartments. In contrast, the recombinant monomeric IgA counterpart behaved as the PCG-4 IgG2a Ab. The direct comparison between different Ig isotype and molecular forms, but of unique specificity, demonstrates that IgAd/p Ab is more efficient in neutralizing toxin A than monomeric IgG and IgA. We conclude that immune protection against C. difficile toxins requires toxin A-specific secretory Abs in the intestinal lumen and IgAd/p specific for both toxins in the lamina propria.
Resumo:
We study the dynamics of annihilation of point defects in Langmuir monolayers. The absence of hydrodynamic effects allows us to quantitatively relate the asymmetry in defect mobility to the elastic anisotropy of the material, which in turn can be varied through the control of the surface pressure applied to the monolayer. Using the proposed theoretical analysis, we are able to obtain rather elusive equilibrium properties out of relatively simple dynamical measurements. In particular, we measure the elastic constants and their pressure dependence.
Resumo:
A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced reaction interconverting two components is formulated. An interplay between phase separation, orientational ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources, and vortex defects.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
We study the dynamics of annihilation of point defects in Langmuir monolayers. The absence of hydrodynamic effects allows us to quantitatively relate the asymmetry in defect mobility to the elastic anisotropy of the material, which in turn can be varied through the control of the surface pressure applied to the monolayer. Using the proposed theoretical analysis, we are able to obtain rather elusive equilibrium properties out of relatively simple dynamical measurements. In particular, we measure the elastic constants and their pressure dependence.