543 resultados para MONODISPERSED COLLOIDS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many efforts have been made in fabricating three-dimensional (3D) ordered zinc oxide (ZnO) nanostructures due to their growing applications in separations, sensors, catalysis, bioscience, and photonics. Here, we developed a new synthetic route to 3D ZnO-based hollow microspheres by a facile solution-based method through a water-soluble biopolymer (sodium alginate) assisted assembly from ZnO nanorods. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectroscopy. Raman and photoluminescence spectra of the ZnO-based hollow microspheres were obtained at room temperature to investigate their optical properties. The hollow microspheres exhibit exciting emission features with a wide band covering nearly all the visible region. The calculated CIE (Commission Internationale d'Eclairage) coordinates are 0.24 and 0.31, which fall at the edge of the white region (the 1931 CIE diagram). A possible growth mechanism of the 3D ZnO superstructures based on typical biopolymer-crystal interactions in aqueous solution is tentatively proposed, which might be really interesting because of the participation of the biopolymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a simple approach to fabricate aggregates composed of monodispersed silica microspheres by modified micromolding in capillaries (MIMIC). Two different kinds of contact modes, namely, conformal contact and non-conformal contact, between the poly(dimethylsiloxane) (PDMS) mold and the underlying prepatterned substrate, can be controlled during the micromolding, which result in the formation of different aggregates under the influence of template confinement and capillary forces. These aggregates, including woodpile structure, discoid, conoid and rectangular clusters, possess well-controlled sizes and orientation. The possible mechanisms for the formation of different aggregates are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide nanocrystals are an important commercial product used primarily in white pigments and abrasives, however, more recently the anatase form of TiO2 has become a major component in electrochemical and photoelectrochemical devices. An important property of titanium dioxide nanocrystals for electrical applications is the degree of crystallinity. Numerous preparation methods exist for the production of highly crystalline TiO2 particles. The majority of these processes require long reaction times, high pressures and temperatures (450–1400 °C). Recently, hydrothermal treatment of colloidal TiO2 suspensions has been shown to produce quality crystalline products at low temperatures (<250 °C). In this paper we extend this idea utilising a direct microwave heating source. A comparison between convection and microwave hydrothermal treatment of colloidal TiO2 is presented. The resulting highly crystalline TiO2 colloids were characterised using Raman spectroscopy, XRD, TEM, and electron diffraction. The results show that the microwave treatment of colloidal TiO2 gives comparable increases in crystallinity with respect to normal hydrothermal treatments while requiring significantly less time and energy than the hydrothermal convection treatment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium oxyhydroxide nanomaterials with narrow size-distribution were synthesised through a simple hydrothermal method. Experimental conditions, such as reaction duration and pH values of the precipitation process and hydrothermal treatment played important roles in determining the nature of the final product chromium oxyhydroxide nanomaterials. The effect of these synthesis parameters were studied with the assistance of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetric analyses. This research has developed a controllable synthesis of Chromium oxyhydroxide nanomaterials from Chromium oxide colloids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically tuned silver nanoparticles (AgNP's) functionalized with ω-mercaptoalkanoic acids are synthesized and used as a signal amplifier for the surface-enhanced resonance Raman scattering (SERRS) study of heme cofactor in methemoglobin (metHb). Even though both mercaptopropionic acid (MPA)- and mercaptononanoic acid (MNA)-functionalized AgNP's exemplify vastly enhanced SERRS signal of metHb, MNA-AgNP's amplify the SERRS signal amid preservation of the nativity of the heme pocket, unlike MPA-AgNP's. The electrostatic interaction between MNA-AgNP's and metHb leads to instant signal enhancement with a Raman enhancement factor (EF(SERS)) of 4.2 × 10(3). Additionally, a Langmuir adsorption isotherm has been employed for the adsorption of metHb on the MNA-AgNP surface, which provides the real surface coverage and equilibrium constant (K) of metHb as 139 nM and 3.6 × 10(8) M(-1), respectively. The lowest detection limit of 10 nM for metHb has been demonstrated using MNA-AgNP's besides retaining the nativity of the heme pocket.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A binary aqueous suspension of large (L) and small (S) nearly-hard-sphere colloidal polystyrene spheres is shown to segregate spontaneously into L-rich and S-rich regions for suitable choices of volume fraction and size ratio. This is the first observation of such purely entropic phase separation of chemically identical species in which at least one component remains fluid. Simple theoretical arguments are presented to make this effect plausible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fraction? of 0.1 and into a glassy state at?=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[??(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector and? is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[??(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameter? for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an introduction to the theory of interacting Brownian particles, as applied to charge-stabilised colloidal suspensions near their equilibrium liquid-solid transition. The density functional approach to the statics of the transition is reviewed briefly, and the generalised Langevin equation method for the dynamics presented in detail. Work with A.V. Indrani [1] on a self-consistent approach for calculating the excess single-particle friction is presented, which explains the observed [2] ''universal'' suppression of self-diffusion at freezing as a consequence of the universal structure-factor height at this transition. Criticisms, open questions, and challenges to theory are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generalised Langevin equation method for the dynamics of interacting colloids presented in my previous lecture is extended here to the case of a sheared suspension. A calculation of shear-dependent diffusivities using these methods is found to account for puzzling observations in experiments and simulations. The limitations of the method are discussed, and important unresolved questions presented. This lecture summarises work done in collaboration with A.V. Indrani [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creation of synthetic systems that emulate the defining properties of living matter, such as motility, gradient-sensing, signaling, and replication, is a grand challenge of biomimetics. Such imitations of life crucially contain active components that transform chemical energy into directed motion. These artificial realizations of motility point in the direction of a new paradigm in engineering, through the design of emergent behavior by manipulating properties at the scale of the individual components. Catalytic colloidal swimmers are a particularly promising example of such systems. Here we present a comprehensive theoretical description of gradient-sensing of an individual swimmer, leading controllably to chemotactic or anti-chemotactic behavior, and use it to construct a framework for studying their collective behavior. We find that both the positional and the orientational degrees of freedom of the active colloids can exhibit condensation, signaling formation of clusters and asters. The kinetics of catalysis introduces a natural control parameter for the range of the interaction mediated by the diffusing chemical species. For various regimes in parameter space in the long-ranged limit our system displays precise analogs to gravitational collapse, plasma oscillations, and electrostatic screening. We present prescriptions for how to tune the surface properties of the colloids during fabrication to achieve each type of behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of size selective monodispersed nanoparticles particularly intermetallic with well-defined compositions represents a challenge. This paper presents a way for the synthesis of intermetallic AuCu nanoparticles as a model system. We show that reduction of Au and Cu precursors is sensitive to the ratio of total molar concentrations of surfactant to metal precursors. A careful design of experiments to understand the kinetics of the reduction process reveals initial formation of seed nanoparticles of pure Au. Reduction of Cu occurs on the surface of the seed followed by diffusion to yield AuCu. This understanding allows us to develop a two step synthesis where the precise size controlled seed of Au nanoparticles produced in the first step is used in the second step reaction mixture as an Au precursor to allow deposition and interdiffusion of Cu that yields size selected AuCu intermetallics of sub 10 nm sizes.