990 resultados para MOLYBDATE AMMOXIDATION CATALYSTS
Resumo:
The structure and catalytic,activity for propylene oxidation of series oxides B2Mo3-3X-Nb2XO12-4X (X=0.00, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25) have been studied by means of XRD, IR, Raman, SEM, ESR and so on. The results showed that in the range of X < 0.
Resumo:
The immobilisation of molybdate on Mg,Al-LDH leads to an active, heterogeneous catalyst that generates singlet molecular oxygen from hydrogen peroxide in the absence of soluble base
Resumo:
By characterizing fresh and used Mo/HMCM-22 catalysts with ICP-AES, XRD, NH3-TPD technique, UV - Vis DRS and UV Raman spectroscopy, the reactivity of Mo species for methane partial oxidation into formaldehyde were directly studied with a new point of view. By comparing the fresh and used catalysts, it was found that the tetrahedral Mo species bonding chemically to the support surface were practically unchanged after the reaction, while the polymolybdate octahedral Mo species, which had a rather weak interaction with the MCM-22 zeolite, leached out during the reaction, especially when the Mo loading was high. Correspondingly, it was found from the time-on-stream reaction data that the HCHO yield remained unchanged, while COx decreased with the reaction time during the reaction. By combining the characterization results and the reaction data, it can be drawn that the isolated tetrahedral molybdenum oxo-species (T-d) is responsible for HCHO formation, while the octahedral polyoxomolybdate species (O-h) will lead to the total oxidation of methane.
Resumo:
An electrode modified with a polybasic lanthanide heteropoly tungstate/molybdate complex K10H3[Nd(SiMo7W4O39)(2)] entrapped into polypyrrole (PPy) film, denoted as Nd(SiMo7W4)(2)-PPy, exhibits three couples of two-electron redox waves in pH 1-5 buffer solutions. The redox waves are surface-controlled at lower scan rates and diffusion-controlled at higher scan rates. The effects of pH on the electrochemical behavior of Nd(SiMo7W4)(2) in PPy film were investigated in detail and compared with that of Nd(SiMo7W4)(2) in aqueous solution. The various charge states of PPy during its redox process have peculiar effects on the relationship between pH and formal potentials of Nd(SiMo7W4)(2)-PPy at different acidities. The Nd(SiMo7W4)(2)-PPy cme can remarkably catalyze the electrochemical reduction of bromate with good stability. (C) 1997 Elsevier Science Ltd.
Resumo:
The ammoxidation of ethanol is investigated as a renewable process for the production of acetonitrile from a bio-feedstock. Palladium catalysts are shown to be active and very selective (>99%) to this reaction at moderate to low temperatures (150-240 °C), with acetonitrile yields considered a function of Pd morphology. Further investigations reveal that the stability of these catalysts is influenced by an unselective product, and that any deactivation observed is reversible. Interpretation of this deactivation allows operating conditions to be defined for the stable, high yielding production of acetonitrile from ethanol.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Raman spectra of chillagite, wulfenite, stolzite, scheelite and wolframite were obtained at 298 and 77 K using a Raman microprobe in combination with a thermal stage. Chillagite is a solid solution of wulfenite and stolzite. The spectra of these molybdate minerals are orientation dependent. The band at 695 cm-1 is interpreted as an antisymmetric bridging mode associated with the tungstate chain. The bands at 790 and 881 cm-1 are associated with the antisymmetric and symmetric Ag modes of terminal WO2 whereas the origin of the 806 cm-1 band remains unclear. The 4(Eg) band was absent for scheelite. The bands at 353 and 401 cm-1 are assigned as either deformation modes or as r(Bg) and (Ag) modes of terminal WO2. The band at 462 cm-1 has an equivalent band in the infrared at 455 cm-1 assigned as as(Au) of the (W2O4)n chain. The band at 508 cm-1 is assigned as sym(Bg) of the (W2O4)n chain.
Resumo:
A series of molybdate bearing minerals including wulfenite, powellite, lindgrenite and iriginite have been analysed by Raman microscopy. These minerals are closely related and often have related paragenesis. Raman microscopy enables the selection of individual crystals of these minerals for spectroscopic analysis even though several of the minerals can be found in the same matrix because of the paragenetic relationships between the minerals. The molybdenum bearing minerals lindgrenite, iriginite and koechlinite were studied by scanning electron microscopy and compositionally analysed by EDX methods using an electron probe before Raman spectroscopic analyses. The Raman spectra are assigned according to factor group analysis and related to the structure of the minerals. These minerals have characteristically different Raman spectra.
Resumo:
Collaborative networks have come to form a large part of the public sector’s strategy to address ongoing and often complex social problems. The relational power of networks, with its emphasis on trust, reciprocity and mutuality provides the mechanism to integrate previously dispersed and even competitive entities into a collective venture(Agranoff 2003; Agranoff and McGuire 2003; Mandell 1994; Mandell and Harrington 1999). It is argued that the refocusing of a single body of effort to a collective contributes to reducing duplication and overlap of services, maximizes increasingly scarce resources and contributes to solving intractable or 'wicked’problems (Clarke and Stewart 1997). Given the current proliferation of collaborative networks and the fact that they are likely to continue for some time, concerns with the management and leadership of such arrangements for optimal outcomes are increasingly relevant. This is especially important for public sector managers who are used to working in a top-down, hierarchical manner. While the management of networks (Agranoff and McGuire 2001, 2003), including collaborative or complex networks (Kickert et al. 1997; Koppenjan and Klijn 2004), has been the subject of considerable attention, there has been much less explicit discussion on leadership approaches in this context. It is argued in this chapter that the traditional use of the terms ‘leader’ or ‘leadership’ does not apply to collaborative networks. There are no ‘followers’ in collaborative networks or supervisor-subordinate relations. Instead there are equal, horizontal relationships that are focused on delivering systems change. In this way the emergent organizational forms such as collaborative networks challenge older models of leadership. However despite the questionable relevance of old leadership styles to the contemporary work environment, no clear alternative has come along to take its place.
Resumo:
The effectiveness of using thermally activated hydrotalcite materials has been investigated for the removal of arsenate, vanadate, and molybdate in individual and mixed solutions. Results show that increasing the Mg,Al ratio to 4:1 causes an increase in the percentage of anions removed from solution. The order of affinity of the three anions analysed in this investigation is arsenate, vanadate, and molybdate. By comparisons with several synthetic hydrotalcite materials, the hydrotalcite structure in the seawater neutralised red mud (SWN-RM) has been determined to consist of magnesium and aluminium with a ratio between 3.5:1 and 4:1. Thermally activated seawater neutralised red mud removes at least twice the concentration of anionic species than thermally activated red mud alone, due to the formation of 40 to 60 % Bayer hydrotalcite during the neutralisation process.
Resumo:
The notion of pedagogy for anyone in the teaching profession is innocuous. The term itself, is steeped in history but the details of the practice can be elusive. What does it mean for an academic to be embracing pedagogy? The problem is not limited to academics; most teachers baulk at the introduction of a pedagogic agenda and resist attempts to have them reflect on their classroom teaching practice, where ever that classroom might be constituted. This paper explores the application of a pedagogic model (Education Queensland, 2001) which was developed in the context of primary and secondary teaching and was part of a schooling agenda to improve pedagogy. As a teacher educator I introduced the model to classroom teachers (Hill, 2002) using an Appreciative Inquiry (Cooperrider and Srivastva 1987) model and at the same time applied the model to my own pedagogy as an academic. Despite being instigated as a model for classroom teachers, I found through my own practitioner investigation that the model was useful for exploring my own pedagogy as a university academic (Hill, 2007, 2008). Cooperrider, D.L. and Srivastva, S. (1987) Appreciative inquiry in organisational life, in Passmore, W. and Woodman, R. (Eds) Research in Organisational Changes and Development (Vol 1) Greenwich, CT: JAI Press. Pp 129-69 Education Queensland (2001) School Reform Longitudinal Study (QSRLS), Brisbane, Queensland Government. Hill, G. (2002, December ) Reflecting on professional practice with a cracked mirror: Productive Pedagogy experiences. Australian Association for Research in Education Conference. Brisbane, Australia. Hill, G. (2007) Making the assessment criteria explicit through writing feedback: A pedagogical approach to developing academic writing. International Journal of Pedagogies and Learning 3(1), 59-66. Hill, G. (2008) Supervising Practice Based Research. Studies in Learning, Evaluation, Innovation and Development, 5(4), 78-87
Resumo:
The concept of sustainable urban development has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of modern urban lifestyles. Today, sustainable development has become a very prominent element in the day-to-day debate on urban policy and the expression of that policy in urban planning and development decisions. As a result of this, during the last few years, sustainable development automation applications such as sustainable urban development decision support systems have become popular tools as they offer new opportunities for local governments to realise their sustainable development agendas. This chapter explores a range of issues associated with the application of information and communication technologies and decision support systems in the process of underpinning sustainable urban development. The chapter considers how information and communication technologies can be applied to enhance urban planning, raise environmental awareness, share decisions and improve public participation. It introduces and explores three web-based geographical information systems projects as best practice. These systems are developed as support tools to include public opinion in the urban planning and development processes, and to provide planners with comprehensive tools for the analysis of sustainable urban development variants in order to prepare the best plans for constructing sustainable urban communities and futures.