959 resultados para MOLECULAR EPIDEMIOLOGY
Resumo:
Acute lower respiratory tract infections (ALRTIs) are a common cause of morbidity and mortality among children under 5 years of age and are found worldwide, with pneumonia as the most severe manifestation. Although the incidence of severe disease varies both between individuals and countries, there is still no clear understanding of what causes this variation. Studies of community-acquired pneumonia (CAP) have traditionally not focused on viral causes of disease due to a paucity of diagnostic tools. However, with the emergence of molecular techniques, it is now known that viruses outnumber bacteria as the etiological agents of childhood CAP, especially in children under 2 years of age. The main objective of this study was to investigate viruses contributing to disease severity in cases of childhood ALRTI, using a two year cohort study following 2014 infants and children enrolled in Bandung, Indonesia. A total of 352 nasopharyngeal washes collected from 256 paediatric ALRTI patients were used for analysis. A subset of samples was screened using a novel microarray pathogen detection method that identified respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and human rhinovirus (HRV) in the samples. Real-time RT-PCR was used both for confirming and quantifying viruses found in the nasopharyngeal samples. Viral copy numbers were determined and normalised to the numbers of human cells collected with the use of 18S rRNA. Molecular epidemiology was performed for RSV A and hMPV using sequences to the glycoprotein gene and nucleoprotein gene respectively, to determine genotypes circulating in this Indonesian paediatric cohort. This study found that HRV (119/352; 33.8%) was the most common virus detected as the cause of respiratory tract infections in this cohort, followed by the viral pathogens RSV A (73/352; 20.7%), hMPV (30/352; 8.5%) and RSV B (12/352; 3.4%). Co-infections of more than two viruses were detected in 31 episodes (defined as an infection which occurred more than two weeks apart), accounting for 8.8% of the 352 samples tested or 15.4% of the 201 episodes with at least one virus detected. RSV A genotypes circulating in this population were predominantly GA2, GA5 and GA7, while hMPV genotypes circulating were mainly A2a (27/30; 90.0%), B2 (2/30; 6.7%) and A1 (1/30; 3.3%). This study found no evidence of disease severity associated either with a specific virus or viral strain, or with viral load. However, this study did find a significant association with co-infection of RSV A and HRV with severe disease (P = 0.006), suggesting that this may be a novel cause of severe disease.
Resumo:
Chlamydia pecorum is a significant pathogen of domestic livestock and wildlife. We have developed a C. pecorum-specific multilocus sequence analysis (MLSA) scheme to examine the genetic diversity of and relationships between Australian sheep, cattle, and koala isolates. An MLSA of seven concatenated housekeeping gene fragments was performed using 35 isolates, including 18 livestock isolates (11 Australian sheep, one Australian cow, and six U.S. livestock isolates) and 17 Australian koala isolates. Phylogenetic analyses showed that the koala isolates formed a distinct clade, with limited clustering with C. pecorum isolates from Australian sheep. We identified 11 MLSA sequence types (STs) among Australian C. pecorum isolates, 10 of them novel, with koala and sheep sharing at least one identical ST (designated ST2013Aa). ST23, previously identified in global C. pecorum livestock isolates, was observed here in a subset of Australian bovine and sheep isolates. Most notably, ST23 was found in association with multiple disease states and hosts, providing insights into the transmission of this pathogen between livestock hosts. The complexity of the epidemiology of this disease was further highlighted by the observation that at least two examples of sheep were infected with different C. pecorum STs in the eyes and gastrointestinal tract. We have demonstrated the feasibility of our MLSA scheme for understanding the host relationship that exists between Australian C. pecorum strains and provide the first molecular epidemiological data on infections in Australian livestock hosts.
Resumo:
Dengue is a mosquito-borne viral disease caused by the four dengue virus serotypes (DENV-1-4) and is currently considered as the most important arthropod-borne viral disease in the world. Nearly half of the human population lives in risk areas, and 50-100 million infections occur yearly according to World Health Organization. The disease can vary from a mild febrile disease to severe haemorrhagic fever and shock. A secondary infection with heterologous serotype increases the risk for severe disease outcome. During the last three decades the impact of dengue has dramatically increased in the endemic areas including the tropics and subtropics of the world. The current situation with massive epidemics of severe disease forms has been associated with socio-ecological changes that have increased the transmission and enabled the co-circulation of different serotypes. Consequently, an increase of dengue has also been observed in travelers visiting these areas. Currently approximately 30 cases are diagnosed yearly in Finnish travelers. In travelers dengue is rarely a life-threatening disease, however in the current study, a fatality was documented in a young Finnish patient who experienced a prolonged primary dengue infection. To improve particularly early laboratory diagnostics, a novel real-time RT-PCR method was developed for the detection of DENV-1-4 RNA based on TaqMan chemistry. The method was shown to be sensitive and specific for detecting DENV RNA and suitable for diagnostic use. The newly developed real-time RT-PCR was compared to other available early diagnostic methods including IgM and NS1 antigen detection using a panel of selected patient samples. The results suggest that the best diagnostic rates are achieved by a combination of IgM with RNA or NS1 detection. The dengue virus strains studied here included the first DENV strains isolated from serum samples of Finnish travelers collected in 2000-2005. The results of sequence analysis demonstrated that the 11 isolates included all four DENV serotypes and presented a global sample of DENV strains from different geographical areas including Asia, Africa and South America. In the present study sequence analysis was also carried out for a collection of 23 novel DENV-2 isolates from Venezuelan patients collected in 1999-2005. The Venezuelan DENV-2 exclusively represented the American-Asian genotype, suggesting that no foreign DENV-2 lineages have recently been introduced to the country. The results also suggest that the DENV-2 viruses detected earlier from Venezuela have been maintained in the area where they have evolved into several lineages. This is in contrast to the pattern observed in some other dengue endemic areas, where introductions of novel virus types and lineages are frequently detected.
Resumo:
Yersinia enterocolitica and Yersinia pseudotuberculosis are among the major enteropathogenic bacteria causing infections in humans in many industrialized countries. In Finland, Y. pseudotuberculosis has caused 10 outbreaks among humans during 1997-2008. Some of these outbreaks have been very extensive involving over 400 cases; mainly children attending schools and day-care. Y. enterocolitica, on the contrary, has caused mainly a large number of sporadic human infections in Finland. Y. pseudotuberculosis is widespread in nature, causing infections in a variety of domestic and wild animals. Foodborne transmission of human infections has long been suspected, however, attempts to trace the pathogen have been unsuccessful before this study that epidemiologically linked Y. pseudotuberculosis to a specific food item. Furthermore, due to modern food distribution systems, foodborne outbreaks usually involve many geographically separate infection clusters difficult to identify as part of the same outbreak. Among pathogenic Y. enterocolitica, the global predominance of one genetically homogeneous type (bioserotype 4/O:3) is a challenge to the development of genetic typing methods discriminatory enough for epidemiological purposes, for example, for tracing back to the sources of infections. Furthermore, the diagnostics of Y. enterocolitica infections is hampered because clinical laboratories easily misidentify some other members of the Yersinia species (Y. enterocolitica–like species) as Y. enterocolitica. This results in misleading information on the prevalence and clinical significance of various Yersinia isolates. The aim of this study was to develop and optimize molecular typing methods to be used in epidemiological investigations of Y. enterocolitica and Y. pseudotuberculosis, particularly in active surveillance and outbreak investigations of Y. pseudotuberculosis isolates. The aim was also to develop a simplified set of phenotypic tests that could be used in routine diagnostic laboratories for the correct identification of Y. enterocolitica and Y. enterocolitica –like species. A PFGE method designed here for typing of Y. pseudotuberculosis was efficient in linking the geographically dispersed and apparently unrelated Y. pseudotuberculosis infections as parts of the same outbreak. It proved to be useful in active laboratory-based surveillance of Y. pseudotuberculosis outbreaks. Throughout the study period, information about the diversity of genotypes among outbreak and non-outbreak related strains of human origin was obtained. Also, to our knowledge, this was the first study to epidemiologically link a Y. pseudotuberculosis outbreak of human illnesses to a specific food item, iceberg lettuce. A novel epidemiological typing method based on the use of a repeated genomic region (YeO:3RS) as a probe was developed for the detection and differentiation between strains of Y. enterocolitica subspecies palearctica. This method was able to increase the discrimination in a set of 106 previously PFGE typed Finnish Y. enterocolitica bioserotype 4/O:3 strains among which two main PFGE genotypes had prevailed. The developed simplified method was a more reliable tool than the commercially available biochemical test kits for differentiation between Y. enterocolitica and Y. enterocolitica –like species. In Finland, the methods developed for Y. enterocolitica and Y. pseudotuberculosis have been used to improve the identification protocols and in subsequent outbreak investigations.
Resumo:
The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.
Resumo:
Pdf-file, link above
Resumo:
Background: India has the third largest HIV-1 epidemic with 2.4 million infected individuals. Molecular epidemiological analysis has identified the predominance of HIV-1 subtype C (HIV-1C). However, the previous reports have been limited by sample size, and uneven geographical distribution. The introduction of HIV-1C in India remains uncertain due to this lack of structured studies. To fill the gap, we characterised the distribution pattern of HIV-1 subtypes in India based on data collection from nationwide clinical cohorts between 2007 and 2011. We also reconstructed the time to the most recent common ancestor (tMRCA) of the predominant HIV-1C strains. Methodology/Principal Findings: Blood samples were collected from 168 HIV-1 seropositive subjects from 7 different states. HIV-1 subtypes were determined using two or three genes, gag, pol, and env using several methods. Bayesian coalescent-based approach was used to reconstruct the time of introduction and population growth patterns of the Indian HIV-1C. For the first time, a high prevalence (10%) of unique recombinant forms (BC and A1C) was observed when two or three genes were used instead of one gene (p<0.01; p = 0.02, respectively). The tMRCA of Indian HIV-1C was estimated using the three viral genes, ranged from 1967 (gag) to 1974 (env). Pol-gene analysis was considered to provide the most reliable estimate 1971, (95% CI: 1965-1976)]. The population growth pattern revealed an initial slow growth phase in the mid-1970s, an exponential phase through the 1980s, and a stationary phase since the early 1990s. Conclusions/Significance: The Indian HIV-1C epidemic originated around 40 years ago from a single or few genetically related African lineages, and since then largely evolved independently. The effective population size in the country has been broadly stable since the 1990s. The evolving viral epidemic, as indicated by the increase of recombinant strains, warrants a need for continued molecular surveillance to guide efficient disease intervention strategies.
Resumo:
Molecular epidemiological investigation was conducted among injecting drug users (IDUs) (n = 11) and heterosexuals (n = 15) in Kunming, Yunnan Province of China. HIV-1 genotypes were determined based on the nucleotide sequences of 2.6-kb gag-RT region. The distribution of genotypes among IDUs was as follows: CRF07_BC (5/11) and CRF08_BC (5/11); subtype B' (1/11). Similarly, a majority of Kunming heterosexuals (14/15) were infected with CRF07_BC (4/15), CRF08_BC (6/15), or subtype B' (4/15), known to predominate among IDUs in China. This contrasts with trends in the coastal regions of China and surrounding southeastern Asian countries, where CRF01_AE predominates among heterosexuals. The heterosexual HIV-1 epidemic in Kunming thus appears to derive from the local IDU epidemic. Of note, subtype B' was the most prevalent strain among heterosexuals before 1997, while CRF07_BC and CRF08_BC became predominant in 2002, indicating a transition of HIV-1 genotype distribution between the early and the more recent samples from Kunming heterosexuals.
Resumo:
Background - Aspergillus respiratory infection is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function and allergic disease. Methods - Fifty-three Aspergillus isolates recovered from CF patients were identified to species by Internal Transcribed Spacer Region (ITS), β-tubulin, and calmodulin sequencing. Results - Three species complexes (Terrei, Nigri, and Fumigati) were found. Identification to species level gave a single Aspergillus terreus sensu stricto, one Aspergillus niger sensu stricto and 51 Aspergillus fumigatus sensu stricto isolates. No cryptic species were found. Conclusions - To our knowledge, this is the first prospective study of Aspergillus species in CF using molecular methods. The paucity of non-A. fumigatus and of cryptic species of A. fumigatus suggests a special association of A. fumigatus sensu stricto with CF airways, indicating it likely displays unique characteristics making it suitable for chronic residence in that milieu. These findings could refine an epidemiologic and therapeutic approach geared to this pathogen.
Resumo:
We conducted a molecular study of MRSA isolated in Swiss hospitals, including the first five consecutive isolates recovered from blood cultures and the first ten isolates recovered from other sites in newly identified carriers. Among 73 MRSA isolates, 44 different double locus sequence typing (DLST) types and 32 spa types were observed. Most isolates belonged to the NewYork/Japan, the UK-EMRSA-15, the South German and the Berlin clones. In a country with a low to moderate MRSA incidence, inclusion of non-invasive isolates allowed a more accurate description of the diversity.