544 resultados para MODULATORS
Ghrelin gene-related peptides : multifunctional endocrine/autocrine modulators in health and disease
Resumo:
Ghrelin is a multi-functional peptide hormone which affects various processes including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types. It may act as an endocrine or autocrine/paracrine factor. The ghrelin gene encodes a precursor protein, preproghrelin, from which ghrelin and other potentially active peptides are derived by alternative mRNA splicing and/or proteolytic processing. The metabolic role of the peptide obestatin, derived from the preproghrelin C-terminal region, is controversial. However, it has direct effects on cancer cell proliferation. The regulation of ghrelin expression and the mechanisms through which the peptide products arise are unclear. We have recently re-examined the organisation of the ghrelin gene and identified several novel exons and transcripts. One transcript, which lacks the ghrelin-coding region of preproghrelin, contains the coding sequence of obestatin. Furthermore, we have identified an overlapping gene on the antisense strand of ghrelin, GHRLOS, which generates transcripts that may function as non-coding regulatory RNAs or code for novel, short bioactive peptides. The identification of these novel ghrelin-gene related transcripts and peptides raises critical questions regarding their physiological function and their role in obesity, diabetes and cancer.
Resumo:
Residual amplitude modulation (RAM) mechanisms in electro-optic phase modulators are detrimental in applications that require high purity phase modulation of the incident laser beam. While the origins of RAMare not fully understood, measurements have revealed that it depends on the beam properties of the laser as well as the properties of the medium. Here we present experimental and theoretical results that demonstrate, for the first time, the dependence of RAM production in electro-optic phase modulators on beam intensity. The results show an order of magnitude increase in the level of RAM, around 10 dB, with a fifteenfold enhancement in the input intensity from 12 to 190 mW/mm 2. We show that this intensity dependent RAM is photorefractive in origin. © 2012 Optical Society of America.
Resumo:
We present experimental and theoretical results of the intensity dependence of residual amplitude modulation (RAM) production in electro-optic phase modulators. By utilizing the anisotropy of the medium, we show that RAM has a photorefractive origin.
Resumo:
Residual amplitude modulation (RAM) is an unwanted noise source in electro-optic phase modulators. The analysis presented shows that while the magnitude of the RAM produced by a MgO:LiNbO3 modulator increases with intensity, its associated phase becomes less well defined. This combination results in temporal fluctuations in RAM that increase with intensity. This behaviour is explained by the presented phenomenological model based on gradually evolving photorefractive scattering centres randomly distributed throughout the optically thick medium. This understanding is exploited to show that RAM can be reduced to below the 10-5 level by introducing an intense optical beam to erase the photorefractive scatter.
Resumo:
This thesis studied the source of instability in optical phase modulators used in high accuracy laser measurement systems. The nonlinear origin of the amplitude noise helped further reducing this instability in applications that rely on phase modulators to function. This outcome will have positive impacts on the development of new methods in the amplitude noise suppression.
Resumo:
Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.
Resumo:
Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.
Resumo:
To determine whether Sertoli cells influence DNA synthesis by rat peritubular myoid cells in vitro, the effects of Sertoli cells on [3H]thymidine incorporation by peritubular myoid cells in a coculture situation were examined. Incubation of testicular peritubular myoid cells with Sertoli cells in coculture induced a significant increase in [3H]thymidine incorporation by peritubular myoid cells. This indicates a cell-cell cooperation between Sertoli and peritubular myoid cells in the testis in terms of DNA synthesis. Secreted factors from Sertoli cells, as tested in a parabiotic culture situation, also increased [3H]thymidine incorporation by peritubular myoid cells. Moreover, in terms of total cellular protein, cocultures of Sertoli cells and peritubular myoid cells resulted in a significant increase when compared with the monocultures, and this coculture effect substituted for the stimulatory response of serum on peritubular myoid cell monoculture. This study investigated the cooperative role of Sertoli cells and peritubular myoid cells in paracrine regulation of testicular functions.
Resumo:
Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive “mesenchymal” cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.
Resumo:
We characterised the effects of selective oestrogen receptor modulators (SERM) in explant cultures of human endometrium tissue. Endometrium tissues were cultured for 24 h in Millicell-CM culture inserts in serum-free medium in the presence of vehicle,17 beta-estradiol (17 beta-E2,1 nM), oestrogen receptor (ER) antagonist ICI 164.384 (40 nM), and 4-OH-tamoxifen (40 nM), raloxifene (4 nM), lasofoxifene (4 nM)and acolbifene (4 nM). Protein expression of ER alpha, ER beta 1 and Ki-67 were evaluated by immunohistochemistry (IHC). The proliferative fraction was assessed by counting the number of Ki-67 positive cells. Nuclear staining of ER( and ER(1 was observed in the glandular epithelium and stroma of pre- and postmenopausal endometrium. ER(1 protein was also localized in the endothelial cells of blood vessels. Treating premenopausal endometrium tissue with 17 beta-E2 increased the fraction of Ki-67 positive cells (p < 0.001) by 55% in glands compared to the control. Raloxifene (4 nM) increased (p < 0.05) the Ki-67 positive fraction. All other SERMS did not affect proliferation in this model. Treating postmenopausal endometrium with 17(-E2 increased (p < 0.001) the fraction of Ki-67 positive cells by 250% in glands compared to the control. A similar effect was also seen for 4-OH-tamoxifen, whereas the rest of SERMs did not stimulate proliferation. We demonstrated that oestradiol increases the fraction of proliferating cells in short term explant cultures of postmenopausal endometrium. In addition, we were able to reveal the agonistic properties of 4-OH-tamoxifen and confirm that raloxifene and next-generation SERMs acolbifene and lasofoxifene were neutral on the human postmenopausal endometrium. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A general method for the preparation of novel disulfide-tethered macrocyclic diacylglycerols (DAGs) has been described. Overall synthesis involved stepwise protection, acylation, and deprotection to yield the bis(omega-bromoacyl) glycerols. In the crucial macrocyclization step, a unique reagent, benzyltriethylammonium tetrathiomolybdate (BTAT), has been used to convert individual bis(omega-bromoacyl) glycerols to their respective macrocyclic disulfides. DAG 6, which had ether linkages between hydrocarbon chains and the glycerol backbone, was also synthesized from an appropriate precursor using a similar protocol. One of the DAGs (DAG 5) had a carbon-carbon tether instead of a disulfide one and was synthesized using modified Glaser coupling. Preparation of alpha-disulfide-tethered DAG (DAG 4) required an alternative method, as treatment of the bisbromo precursor with BTAT gave a mixture of several compounds from which separation of the target molecule was cumbersome. To avoid this problem, the bisbromide was converted to its corresponding dithiocyanate, which on further treatment with BTAT yielded the desired DAG (DAG 4) in good yield. Upon treatment with the reducing agent dithiothreitol (DTT), the DAGs that contain a disulfide tether could be quantitatively converted to their "open-chain" thiol analogues. These macrocyclic DAGs and their reduced "open-chain" analogues have been incorporated in DPPC vesicles to study their effect on model membranes. Upon incorporation of DAG 1 in DPPC vesicles, formation of new isotropic phases was observed by P-31 NMR, These isotropic phases disappeared completely on opening the macrocyclic ring by a reducing agent. The thermotropic properties of DPPC bilayers having DAGs (1-6) incorporated at various concentrations were studied by differential scanning calorimetry. Incorporation of DAGs in general reduced the cooperativity unit (CU) of the vesicles. Similar experiments with reduced "open-chain" DAGs incorporated in a DPPC bilayer indicated a recovery of CU with respect to their macrocyclic "disulfide" counterparts. The effect of inclusion of these DAGs on the activity of phospholipase A(2) (PLA(2)) was studied in vitro. Incorporation of DAC 1 in DPPC membranes potentiated both bee venom and cobra venom PLA(2) activities.
Resumo:
The paper presents a new adaptive delta modulator, called the hybrid constant factor incremental delta modulator (HCFIDM), which uses instantaneous as well as syllabic adaptation of the step size. Three instantaneous algorithms have been used: two new instantaneous algorithms (CFIDM-3 and CFIDM-2) and the third, Song's voice ADM (SVADM). The quantisers have been simulated on a digital computer and their performances studied. The figure of merit used is the SNR with correlated, /?C-shaped Gaussian signals and real speech as the input. The results indicate that the hybrid technique is superior to the nonhybrid adaptive quantisers. Also, the two new instantaneous algorithms developed have improved SNR and fast response to step inputs as compared to the earlier systems.