1000 resultados para MODIFIED MICROELECTRODES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact blue conducting mixed-valence Mo (VI,V) oxide film was grown on the surface of a carbon fibre (CF) microelectrode by cycling the potential between +0.20 and similar to 0.70 V SCE in freshly prepared Na2MoO4 solution in H2SO4 (pH 2). The thicknes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a carbon fibre (CF) microelectrode modified with the 2:18-molybdodiphosphate anion by simple adsorption is described and its electrochemical behaviour is reported. The 2:18-molybdodiphosphate anion (alpha-P2Mo18O626-), which is a Dawson structure, undergoes five successive multielectron reductions in acidic solution. The first three redox waves correspond to the two-electron process, and the last two waves are four-electron and six-electron processes respectively. On the basis of the experimental results it is shown that the electrode process of alpha-P2Mo18O626- on the CF electrode in acidic solution is simultaneously controlled by the diffusion and adsorption of alpha-P2Mo18O626- anions. When the concentration of the alpha-P2Mo18O626- in the solution is reduced, the electrode process mainly exhibits non-diffusion-controlled behaviour, and the diffusion-limited process takes over as the concentration of alpha-P2Mo18O626- becomes higher. The CF electrode modified with a thin film of alpha-P2Mo18O626- exhibits very good stability and redox behaviour in aqueous acidic solution. The alpha-P2Mo18O626- is reduced to heteropoly blue, with an accompanying protonation process. The addition of more than six electrons to the alpha-P2Mo18O626- anion in an aqueous solution does not result in its decomposition. The result obtained is not the same as that reported previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the electrochemical properties of isopolymolybdic anion thin film modified carbon fibre (CF) microelectrode prepared by simple dip coating have been described. The modified electrode shows three couples of surface redox waves between + 0.70 and - 0.1 V vs. sce in 2 M H2SO4 solution with good stability and reversibility. The pH of solution has a marked effect on the electrochemical behaviour and stability of the film, the stronger the acidity of electrolyte solution is, the better the stability and reversibility of isopolymolybdic anion film CF microelectrode will be. The scanning potential range strongly influences on the electrochemical behaviour of the film. The isopolymolybdic anion film prepared by the dip coating resulting a monolayer with estimated surface concentration (F) 2.8 x 10(-11) mol cm-2. From the half-peak widths and peak areas of the surface redox waves of the film electrode, the first three surface waves are corresponding to two-electron processes. The electron energy spectra show the products by six electrons reduction are a mixture of Mo(VI) and Mo(V) species. The electrochemical reaction of the isopolymolybdic anion monolayer can be expressed as Mo8O264- + mH+ + 2ne half arrow right over half arrow left [HmMo8-2n(VI)Mo2n(V)O26](4,2n-m)-n = 1, 2, 3; m = 2, 5, 7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the preparation of isopoly- and heteropolyoxometallates (IPA and HPA) thin film modified carbon fiber (CF) microelectrodes and the factor that influences the modification of IPA and HPA films are described. IPA and HPA film modified CF microelectrodes can all be prepared by cyclic potential scan and simple dip coating. The modified electrodes prepared are very stable and reversible in acidic solution with monolayer characteristics. The electrochemical pretreatment of CF microelectrodes plays an important role in the modification of IPA and HPA film. The absorption of IPA and HPA film on electrode surfaces has been discussed on the basis of surface conditions of the CF microelectrode and the structure of IPA and HPA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple and attractive method for quantification of ascorbic acid (AA) in beers, soda, natural juices and commercial vitamin C tablets was achieved by combining Bow injection analysis and amperometric detection. An array of gold microelectrodes electrochemically modified by deposition of palladium was employed as working electrode which was almost unaffected by fouling effects. Ascorbic acid was quantified in beverages and vitamin tablets using amperometric differential measurements. This method is based on three steps involving the flow injection of: 1) the sample plus a standard addition of AA, 2) the pure sample, and 3) the enzymatically-treated sample. The enzymatic treatment was carried out with Cucumis sativus tissue, which is a rich source of ascorbate oxidase, at pH 7. The calibration plots for freshly prepared ascorbic acid standards were very linear in the concentration range of 0.18-1.8 mg L-1 with a relative standard deviation (RSD) < 1%, while for real samples the deviations were between 2.7% to 8.9%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multilayer films composed of heteropolyanions (HPAS, SiMo11 VO405-) and cationic polymer poly(diallyldimethylammonium chloride) on 4-aminothiophenol self-assembled-monolayer were fabricated by electrochemical growth. Growth processes of the composite films were characterized by cyclic voltammetry. The results prove the third redox peak of Mo increases more rapidly, otherwise the other Mo redox peaks increase very slowly when the number of layers of heteropolyanions is greater. The peak potentials of composite films shift linearly to negative position with higher pH, which implies that protons are involved in the redox processes of HPA. The investigation of electrocatalytic behaviors of composite films shows a good catalytic activity for the reductions of HNO2 and BrO3-. Catalytic currents increase with increasing number of layers of heteropolyanions, moreover, the catalytic currents have a good linear relationship with the concentrations of BrO3-.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel ceramic-carbon electrodes (CCEs) containing 1:12-phosphomolybdic acid (PMo12) were constructed by homogeneously dispersing PMo12 and graphite powder into methyltrimethoxysilane-derived gel. Peak currents for the PMo12-doped CCE were surface-controlled at lower scan rates but diffusion-controlled at higher scan rates and peak potentials shifted to the negative potential direction with increasing pH. In addition, the electrode exhibited electrocatalytic activity toward the oxidation of ascorbic acid. The PMo12-modified CCE presented good chemical and mechanical stability and good surface renewability (ten successive polishing resulted in less than 5% relative standard deviation). (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1:12-Silicomolybdic acid (SiMo12) doped carbon ceramic composite electrodes were fabricated by incorporating SiMo12 and graphite powder in a methyltrimethoxysilane-based gel and characterized by cyclic and square-wave voltammetry, It was demonstrated that the chemically modified electrodes were suitable for electrocatalytic reduction of bromate, The electrodes had the remarkable advantage of surface renewal owing to bulk modification, as web as simple preparation, good mechanical and chemical stability and reproducibility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A molybdophosphate anion modified electrode has been prepared in 2 M sulfuric acid solution containing PMo12O403- by electrochemical cycling scan or simple adsorption on a glassy carbon electrode anodized before modification. The film electrode obtained is very stable upon potential cycling in acid solution. The catalytic effect of the film for reduction of bromate was investigated in detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the electrochemical behaviour of molibdosilicic heteropoly complex with dysprosium K10H3[Dy(SiMo11O39)(2)]. xH(2)O [denoted as Dy(SiMo11)(2)] was studied. Voltammetric behavior of this complex was greatly influenced by pH of solutions. The polypyrrole (PPy) film doped with this complex was prepared by electropolymerization of pyrrole in the presence of Dy(SiMo11)(2) under potential cycling conditions. The microenvironment within the PPy film has an effect on the electrochemical behavior of Dy(SiMo11)(2) entrapped in the film. The film electrode can catalyze the reduction of ClO3- and BrO3-.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrodes modified with isopolymolybdic acid+polyaniline film, which exhibit high stability and activity in aqueous acidic solution, have been prepared successfully using two methods: one-step synthesis by electrochemical polymerization at a constant applied potential of +0.80 V/SCE or by cycling the potential at 100 mV/s between -0.12 and +0.85 V in 0.5 M H2SO4 containing 5.0x10(-2) M aniline and 5.0x10(-3) M H4Mo8O26, or two-step synthesis by doping the polyaniline film electrode with isopoly acid (IPA) under a cycling potential between -0.20 and +0.40 V in 0.5 M H2SO4 containing the H4Mo8O26 dopant. The thickness of the film and the amount of dopant in the polyaniline film can be controlled by experimental parameters such as the charge, time and the ratio of aniline to IPA in the solution. The experimental results show that electrodes modified with isopolymolybdic acid+polyaniline film using both methods have a strong catalytic effect on the reduction of chlorate anions. Comparison of the two methods of modification shows that the catalytic effect at the modified electrode prepared by the two-step method is greater than that at the electrode prepared by the one-step method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon nanotubes paste (CNTP) electrode was prepared with multi-walled carbon nanotubes and methyl silicone oil. Polyoxometalates (POMs) were assembled on the electrode surface with different methods, and investigated by cyclic voltammetry and Raman spectroscopy. Experiments showed that POMs/CNTP electrode prepared by direct method had better performance. K6P2Mo18O62 center dot 14H(2)O (P2Mo18) assembled CNTP electrode (P2Mo18/CNTP) electrode possessed good reversibility and could catalyze the reduction of bromate and iodate in 0.1 M H2SO4 Solution. Further, the multilayer films of P2Mo18 assembled CNTP electrodes were fabricated by layer-by-layer technique, which showed higher electrocatalytic activities. All these POMs assembled CNTP electrodes prepared exhibited good stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) and 1:12 silicotungstic acid (SiW12) were alternately deposited on a 4-aminobenzoic acid (4-ABA)-modified glassy carbon electrode through a layer-by-layer method. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV) and UV/vis absorption spectroscopy. We proved that the prepared multilayer films are uniform and stable. SiW12-containing multilayer films (SiW12 as the outermost layer) exhibit remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). The kinetic constants for HER were comparatively investigated at different layers Of SiW12/CoTMPyP multilayer film-modified electrodes by hydrogen evolution voltammetry. In addition, rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) voltammetric methods confirm that SiW12/CoTMPyP (CoTMPyP as the outermost layer) multilayer films catalyze almost a two-electron reduction of O-2 to H2O2 in pH 1-6 buffer solutions. Furthermore, P2W18/CoTMPyP films were also assembled, and their catalytic activity for HER is very different from that Of SiW12/CoTMPyP multilayer films.