62 resultados para MMP9
Resumo:
Background and objectives Interleukin 18 (IL-18) is a pleiotropic cytokine involved in rheumatoid arthritis (RA) pathogenesis. This study was carried out to evaluate the effi cacy of IL-18 binding protein (IL-18BP) gene therapy in the rat adjuvant- induced arthritis (AIA) model and to decipher the mechanisms by which IL-18BP delivery lessens bone destruction.Materials and methods Arthritis was induced in female Lewis rat by Mycobacterium butyricum and the mRNA expression of IL-18 and IL-18BP was determined in the joints. In a preventive study, rats were divided into an adenovirus producing IL-18BP-Fc (AdmIL-18BP-Fc) group (n=8) and an adenovirus producing green fl uorescent protein (AdGFP) group (n=7). On day 8 after AIA induction, adenoviruses were injected. Clinical parameters were assessed. At day 18, during maximal arthritis, the rats were euthanized, ankles were collected and x-rays were performed. mRNA and protein were extracted from joints for analysis by quantitative reverse transcriptase-PCR, multiplex, Western blot and zymography.Results The authors observed a decrease in the (IL-18BP/ IL-18) ratio from day 7 to 45. Administration of AdmIL-18BPd-Fc decreased clinical parameters and prevented bone and joint destruction compared to AdGFP administration. IL-18BP delivery reduced the (receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG)) ratio by 70%, the matrix metalloproteinase 9 (MMP9) level by 33% and the tartrate-resistant acid phosphatase (TRAP) level by 44% in the joint homogenates from AdmIL-18BPd-Fc compared to AdGFP treated rats.Conclusions In rat AIA, a decrease in the (IL-18BP/IL-18) ratio was observed. IL-18BP delivery prevented joint and bone destruction by downregulating MMP9, (RANKL/OPG) and TRAP, suggesting a potential benefi t of a similar therapy in RA.Abstract topics Towards novel therapeutic strategies.
Resumo:
Sphingolipids are widely expressed molecules, which traditionally were considered to have majorly structural properties. Nowadays, however, they are implicated in a wide range of different biological processes. The bioactive lipid sphingosine 1-phosphate (S1P) has emerged during the past decade as one of the most studied molecules due to its proliferative and pro-migratory abilities both during normal physiology and in the pathology of a subset of different diseases. Migration and invasion of cancer cells require changes in cell behavior and modulation of the tissue microenvironment. Tumor aggressiveness is markedly enhanced by hypoxia, in which hypoxia inducible transcription factors 1-2α (HIF-1-2α) are activated to promote metabolism, proliferation and migration. Invasion requires degradation of the extracellular matrix (ECM) achieved by several degrading and remodeling enzymes. Matrix metalloproteinases (MMPs) are broadly expressed and well accepted as proteolytic enzymes with essential roles both in normal physiology and in pathology. Previously, S1P was shown to strongly evoke migration of follicular ML-1 thyroid cancer cells. The objective of this study was to further investigate and understand the mechanisms behind this regulation. In the first project it was demonstrated that S1P enhances the expression and activity of HIF-1α. S1P enhanced the expression of HIF-1α by increasing its synthesis and stability. The S1P-increased HIF-1α was mediated via S1P3, Gi/0, PI3K, PKCβI, ERK1/2, mTOR and translation factors p70S6K and eIF4E. Finally, it was shown that HIF-1α mediated S1P-induced migration. The ECM is constituted of a complex and coordinated assembly of many types of proteins. In order to be able to invade, cells need to break down the ECM, therefore several key players in this event were investigated in the second project. S1P increased the secretion and activity of MMP2 and MMP9 via S1P-receptor 1 and 3 and that these MMPs participated in the S1P-facilitated invasion of ML-1 cells. In this interplay, calpains and Rac1 were involved, both of which are crucial players in migration and invasion. The prognosis for some types of thyroid cancer is relatively good. However, there are forms of thyroid cancers, for which there are no treatments or the current available treatments are inefficient. Thus, new medical interventions are urgently needed. In the third project the significance of the S1P-receptor modulating drug FTY720, which is currently used for the treatment of multiple sclerosis (MS), was studied. The effect of FTY720 was tested on several thyroid cancer cell lines, and it inhibited the proliferation and invasion of all cancer cell lines tested. In ML-1 cells, FTY720 attenuated invasion by blocking signaling intermediates important for migration and invasion of the cells. Moreover, FTY720 inhibited the proliferation of ML-1 cells by increasing the expression of p21 and p27, hence, inducing cell arrest in G1 phase of the cell cycle. Thus, it can be suggested that FTY720 could be used in the treatment of thyroid cancer.
Resumo:
Migration, invasion and protease activity are essential for tumor progression and metastasis. Metastatic cells rely on invadopodia to degrade and invade extracellular matrix (ECM). Invadopodia are membrane protrusions with enzymes required for ECM degradation. These protrusions contain cortactin and membrane type I matrix metalloproteinase (MT1-MMP) superimposed to areas of digested matrix. Here we characterized invadopodia in a cell line (CAC2) derived from human adenoid cystic carcinoma. We carried out fluorescent-substrate degradation assay to assess in situ protease activity of CAC2 cells. Digestion spots in fluorescent substrate appear as black areas in green background. Cells were cultured on Matrigel-gelatin-FITC and fixed after 1 h and 3 h. CAC2 cells were double labeled to actin and cortactin. Cells were also double stained to actin and MT1-MMR Samples were studied by laser scanning confocal microscopy. In all time points CAC2 cells showed actin, cortactin, and MT1-MMP colocalized with digestion spots in fluorescent substrate. We searched for other proteases involved in invadopodia activity. We have previously demonstrated that MMP9 influences adenoid cystic carcinoma behavior. This prompted us to investigate role played by MMP9 on invadopodia formation. CAC2 cells had MMP9 silenced by siRNA. After I h in fluorescent substrate, cells with silenced MMP9 showed clear decrease in matrix digestion compared with controls. No differences were found in cells with silenced MMP9 grown for 3 h on fluorescent substrate. Our results showed that CAC2 cells exhibit functional invadopodia containing cortactin and MT1-MMR Furthermore, MMP9 would be required in the initial steps of invadopodia formation. Microsc. Res. Tech. 73:99-108, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of daily ingestion of collagen hydrolysate (CH) on skin extracellular matrix proteins was investigated. Four-week-old male Wistar rats were fed a modified AIN-93 diet containing 12% casein as the reference group or CH as the treatment group. A control group was established in which animals were fed a non-protein-modified AIN-93 diet. The diets were administered continuously for 4 weeks when six fresh skin samples from each group were assembled and subjected to extraction of protein. Type I and IV collagens were studied by immunoblot, and activities of matrix metalloproteinase (MMP) 2 and 9 were assessed by zymography. The relative amount of type I and IV collagens was significantly (P<.05) increased after CH intake compared with the reference diet group (casein). Moreover, CH uptake significantly decreased both proenzyme and active forms of MMP2 compared with casein and control groups (P<.05). In contrast, CH ingestion did not influence on MMP9 activity. These results suggest that CH may reduce aging-related changes of the extracellular matrix by stimulating anabolic processes in skin tissue.
Resumo:
Purpose: Prostate cancer is the most common tumor in males in Brazil. Single nucleotide polymorphisms have been demonstrated to exist in the promoter regions of matrix metalloproteinase genes and they are associated with the development and progression of some cancers. We investigated the correlation between MMP1, 2, 7 and 9 polymorphisms with susceptibility to prostate cancer, and classic prognostic parameters of prostate cancer. Materials and Methods: Genomic DNA was extracted using conventional protocols. The DNA sequence containing the polymorphic site was amplified by realtime polymerase chain reaction using TaqMan (R) fluorescent probes. Results: For the MMP1 gene the polymorphic allele was more common in the control group than in the prostate cancer group (p <0.001). For the MMP9 gene the incidence of the polymorphic homozygote genotype was higher in the prostate cancer group (p <0.001). For higher stage tumors (pT3) a polymorphic allele in the MMP2 gene was more common (p = 0.026). When considering Gleason score, the polymorphic homozygote genotype of MMP9 was more common in Gleason 6 or less tumors (p = 0.003), while a polymorphic allele in the MMP2 gene was more common in Gleason 7 or greater tumors (p = 0.042). Conclusions: MMP1 and MMP2 may protect against prostate cancer development and MMP9 may be related to higher risk. In contrast, MMP9 polymorphism was associated with a lower Gleason score and MMP2 polymorphism was associated with nonorgan confined disease.
Resumo:
The aim of the present study was to evaluate the effect of hyperbaric oxygen therapy (HBO(2)) on the healing process of ischemic colonic anastomoses in rats Forty Wistar rats were divided into four groups control (Group I), control and HBO(2) (Group 11), ischemia (Group III), ischemia and HBO(2) (Group IV) Ischemia was achieved by clamping four centimeters of the colonic arcade On the eighth therapy day, the anastomotic region was removed for quantification of hydroxyproline and immunohistochemical determination of metalloproteinases 1 and 9 (MMP1,MMP9) The immunohistochemical studies showed significantly larger metalloproteinase-labeled areas in Group IV compared with Group III for both MMP1 and MMP9 (p<001) This finding points to a higher remodeling activity of the anastomoses in this experimental group Additionally, animals subjected to hyperbaric oxygen therapy showed both a reduction in interstitial edema and an increase in hydroxyproline concentrations [at the anastomotic site] Therefore, we conclude that HBO(2) is indeed beneficial in anastomotic ischemia
Resumo:
This study evaluates the mRNA expression profile of genes TIMP1, TIMP2, MMP2 and MMP9 in diagnostic bone marrow samples from 134 consecutive ALL children by real-time quantitative PCR. A significant association was observed between higher expression levels of MMP9 and low risk group and absence of extramedullary infiltration and higher expression levels of TIMP2 and MMP2 with T-ALL. TIMP1 gene expression values higher than the median were associated with a significantly lower 5-year event free-survival in univariable (P = 0.04) and multivariable analysis (P = 0.01). Our data address new information in the complex interaction of the migration/adhesion genes and childhood ALL. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Most meningiomas are benign tumours of arachnoidal origin, although a small number have high proliferative rates and invasive properties which complicate complete surgical resection and are associated with increased recurrence rates. Few prognostic indicators exist for meningiomas and further research is necessary to identify factors that influence tumour invasion, oedema and recurrence. Paraffin sections from 25 intracranial meningiomas were analysed for expression of the proteins vascular endothelial growth factor (VEGF), VEGF receptors Flt1 and Flk1, E-cadherin, metalloproteinases 2 and 9 (MMP2, MMP9), CD44, receptor for hyaluronic acid-mediated motility (RHAMM), hyaluronic acid (HA), CD45, cyclooxygenase 2 (COX2), brain fatty acid binding protein (BFABP), Ki67, and proliferating cell nuclear antigen (PCNA). Correlations among protein expression were found for several markers of proliferation (Ki67, PCNA, MI) and microvessel density (MVD). COX2 expression increased with increasing with tumour grade and correlated with Ki67, PCNA, MI, MVD, and BFABP. BFABP expression also correlated with Ki67 and PCNA expression. Relationships were also identified among angiogenic factors (VEGF, Flt1, Flk1) and proliferation markers. Oedema was found to correlate with MMP9 expression and MMP9 also correlated with proliferation markers. No correlations were found for MMP2, E-cadherin, or CD44 in meningiomas. In conclusion Ki67, PCNA, MI, MVD, BFABP, and COX2 were significantly correlated with meningioma tumour grade and with each other. These findings, by correlating both intracellular fatty acid transport and eicosanoid metabolism with tumour proliferation, as determined by Ki67 labelling and mitotic index, suggest fatty acids are involved in the progression of meningiomas.
Resumo:
Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68(+) cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox (TM) micro-granules) and Group-II (Gen-Ox (TM) macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68(+) cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68(+) cells.
Resumo:
FUNDAMENTOS: Síndrome Metabólica (SM) está associada com maior risco cardiovascular, porém não está claro se as alterações miocárdicas presentes nessa condição, como a disfunção diastólica, são consequência de mecanismos sistêmicos ou de efeitos diretos no miocárdio. OBJETIVOS: Comparar função diastólica, biomarcadores de atividade da Matriz Extracelular (MEC), inflamação e estresse hemodinâmico, em pacientes com SM e controles saudáveis. MÉTODOS: Pacientes com SM (n = 76) e controles saudáveis (n = 30) foram avaliados clinicamente e submetidos a exame ecocardiográfico e mensuração dos níveis plasmáticos de metaloproteinase-9 (MMP9), inibidor tecidual da metaloproteinase-1 (TIMP1), proteína C reativa ultrassensível (PCR-us), resistência insulínica (HOMA-RI) e NT-proBNP. RESULTADOS: O grupo SM apresentou menor onda E' (10,1 ± 3,0 cm/s vs. 11,9 ± 2,6 cm/s, p = 0,005), maiores valores para onda A (63,4 ± 14,1 vs. 53,1 ± 8,9 cm/s, p < 0,001), razão E/E'(8,0 ± 2,2 vs. 6,3 ± 1,2; p < 0,001), MMP9 (502,9 ± 237,1 vs. 330,4 ± 162,7 ng/mL, p < 0,001), PCR-us (p = 0,001) e HOMA-RI (p < 0,001), sem diferença nos níveis de TIMP1 e NT-proBNP. Na análise multivariada, apenas MMP9 foi independentemente associada a SM. CONCLUSÃO: Pacientes com SM apresentaram diferenças em medidas ecocardiográficas de função diastólica, na atividade da MEC, PCR-us e HOMA-RI em relação aos controles. Porém, somente MMP9 foi independentemente associada com SM. Esses achados sugerem que os efeitos precoces da SM sobre a atividade da MEC podem não ser detectados nas medidas ecocardiográficas de função diastólica usuais.
Resumo:
Objective: Saphenous vein graft bypass remains the salvage option when¦endovascular procedure has failed or was contraindicated due to extensive¦occlusive lesions. However, pathological wall remodeling leading leading to¦graft failure is one of the most limiting factors of this therapy. Therefore, the¦understanding of this remodeling process of human vein is essential to the design¦of future effective therapeutics and it requires an adapted model of ex-vivo vein¦perfusion.¦Methods: We have developed an ex vivo vein support system (EVVSS), which¦uses standardized and controlled hemodynamic parameters for the pulsatile¦perfusion of saphenous vein segments. The morphological and molecular¦parameters involved in the remodeling process under an arterial shear stress¦associated to low (7 mm Hg) or high (70 mm Hg) pressure conditions can be¦analyzed.¦Results: Histomorphometric analysis showed that the vein segments perfused¦during 7 days under high pressure undergo a significant neointima development¦compared to veins exposed to low pressure conditions. The application of an¦arterial shear stress in the vein under low pressure induced an elevation of the¦MMP-2 and MMP-9 expression, activity and transcription. The application of¦higher pressure is associated to increased MMP2 expression and transcription¦and MMP9 transcription. TIMP1 expression and transcription were initiated by¦the application of an arterial shear stress but not modified by the modification¦of the pressure. However, TIMP2 expression was increased under high¦pressure conditions but its transcription was inhibited by arterial shear stress,¦independently of the pressure. The values of transcription and expression of¦PAI-1 were not modified by high pressure. Eph-B4 transcription and expression¦were significantly decreased under arterial shear stress.¦Conclusion: These data show that our EVVSS is a valuable setting to study¦ex vivo remodeling of human saphenous veins submitted to arterial conditions.¦The intimal hyperplasia as well as MMP 2, 9 and TIMP 2 seem to be influenced¦by the pressure.
Resumo:
El sarcoma de Ewing es el segundo tumor óseo infantil más frecuente y presenta una alta incidencia de enfermedad metastática. Este tipo de tumores presentan una traslocación génica característica que da origen a una proteína de fusión, normalmente EWS/FLI1. Esta proteína de fusión actúa como factor de transcripción aberrante regulando la expresión de diferentes genes implicados en la iniciación, mantenimiento y progresión del tumor. Nuestro grupo describió como uno de estos genes diana a la caveolina 1 (CAV1) describiendo además su papel determinante en el fenotipo maligno del sarcoma de Ewing, en la tumorigénesis y en la resistencia a apoptosis inducida por quimioterapia. Para investigar el papel concreto de CAV1 en el proceso metastático de este sarcoma, creamos un modelo de baja expresión de CAV1 en líneas celulares de sarcoma de Ewing y determinamos cambios en su capacidad migratoria, invasiva y metastática. En los ensayos in vitro hallamos una menor capacidad migratoria de las células knockdown de CAV1 y una reducción en la expresión de MMP9 y en la actividad de MMP2. La regulación de la actividad de MMP2 parece estar relacionada con la posible regulación que ejerce CAV1 en la función de MT1-MMP, proteína fundamental para la activación de MMP2. Por otro lado, en este estudio proponemos que CAV1 promueve la expresión de MMP9 tanto transcripcionalmente, regulando la vía de señalización ERK1/2, como a nivel post-transcripcional regulando la vía RSK1/rpS6. Además, en los ensayos de metástasis experimental in vivo las células knockdown de CAV1 presentaron una menor incidencia de metástasis pulmonar, hecho que correlacionó con una disminución en la expresión de SPARC, una proteína de adhesión importante en procesos metastáticos. En resumen, nuestros resultados evidencian la importancia de CAV1 en el proceso metastático del sarcoma de Ewing.