960 resultados para MIXED-STATE ENTANGLEMENT
Resumo:
We show that the classification of bipartite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.
Mixed-state entanglement in the light of pure-state entanglement constrained by superselection rules
Resumo:
We show that the classification of bi-partite pure entangled states when local quantum operations are restricted, e.g., constrained by local superselection rules, yields a structure that is analogous in many respects to that of mixed-state entanglement, including such exotic phenomena as bound entanglement and activation. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. Specifically, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.
Resumo:
We provide an easily computable formula for a bipartite mixed-state entanglement measure. Our formula can be applied to readily calculate the entanglement for any rank-2 mixed state of a bipartite system. We use this formula to provide a tight upper bound for the entanglement of formation for rank-2 states of a qubit and a qudit. We also outline situations where our formula could be applied to study the entanglement properties of complex quantum systems.
Resumo:
We present a critical study of the temperature and field dependence magnetization of high temperature superconductors (HTSCs). The controversial field dependence of dM/dInB for YBa(2)Cu(3)O(7) (YBCO) and Bi(2)Sr(2)CaCu(2)O(8) (BSCCO) is discussed using different models. Moreover, for both the systems the magnetization (M(H)) dependence is compared with field (H) dependence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present a parametrically efficient method for measuring the entanglement of formation E-f in an arbitrarily given unknown two-qubit state rho(AB) by local operations and classical communication. The two observers, Alice and Bob, first perform some local operations on their composite systems separately, by which the desired global quantum states can be prepared. Then they estimate seven functions via two modified local quantum networks supplemented a classical communication. After obtaining these functions, Alice and Bob can determine the concurrence C and the entanglement of formation E-f.
Resumo:
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Resumo:
We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.
Resumo:
Does bound entanglement naturally appear in quantum many-body systems? We address this question by showing the existence of bound-entangled thermal states for harmonic oscillator systems consisting of an arbitrary number of particles. By explicit calculations of the negativity for different partitions, we find a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We offer an interpretation of this result in terms of entanglement-area laws, typical of these systems. Finally, we discuss generalizations of this result to other systems, including spin chains.
Resumo:
We consider the ground-state entanglement in highly connected many-body systems consisting of harmonic oscillators and spin-1/2 systems. Varying their degree of connectivity, we investigate the interplay between the enhancement of entanglement, due to connections, and its frustration, due to monogamy constraints. Remarkably, we see that in many situations the degree of entanglement in a highly connected system is essentially of the same order as in a low connected one. We also identify instances in which the entanglement decreases as the degree of connectivity increases.
Resumo:
Magnetization measurements were performed on CeCoIn5 at temperatures down to 20 mK and magnetic fields up to 17 T applied along different crystallographic orientations. For field configurations nearly parallel to the ab plane (theta less than or similar to 40 degrees and T <= 50 mK), we have found an intriguing vortex dynamics regime revealed by a hysteretic and metastable anomalous peak effect (APE), which gives evidence of surface barrier effects enhanced by antiferromagnetic fluctuations in the mixed state of CeCoIn5. Furthermore, we have observed crossover features in the torque and magnetization traces at fields below H-c2, which are consistent with vortices lattice phase transitions and with the anomalies speculated to be the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in CeCoIn5. All of the above features were found to be dramatically perturbed in Ce0.98Gd0.02CoIn5.
Resumo:
We introduce a new class of generalized isotropic Lipkin–Meshkov–Glick models with su(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of su(m+1) type. We evaluate in closed form the reduced density matrix of a block of Lspins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as a log L when L tends to infinity, where the coefficient a is equal to (m − k)/2 in the ground state phase with k vanishing magnon densities. In particular, our results show that none of these generalized Lipkin–Meshkov–Glick models are critical, since when L-->∞ their Rényi entropy R_q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized su(m+1) Lipkin–Meshkov–Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥3. Finally, in the su(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of su(3). This is also true in the su(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m + 1)-simplex in R^m whose vertices are the weights of the fundamental representation of su(m+1).
Resumo:
Steady state entanglement in ensembles of harmonic oscillators with a common squeezed reservoir is studied. Under certain conditions the ensemble features genuine multipartite entanglement in the steady state. Several analytic results regarding the bipartite and multipartite entanglement properties of the system are derived. We also discuss a possible experimental implementation which may exhibit steady state genuine multipartite entanglement.
Resumo:
For a general tripartite system in some pure state, an observer possessing any two parts will see them in a mixed state. By the consequence of Hughston-Jozsa-Wootters theorem, each basis set of local measurement on the third part will correspond to a particular decomposition of the bipartite mixed state into a weighted sum of pure states. It is possible to associate an average bipartite entanglement ((S) over bar) with each of these decompositions. The maximum value of (S) over bar is called the entanglement of assistance (E-A) while the minimum value is called the entanglement of formation (E-F). An appropriate choice of the basis set of local measurement will correspond to an optimal value of (S) over bar; we find here a generic optimality condition for the choice of the basis set. In the present context, we analyze the tripartite states W and GHZ and show how they are fundamentally different. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.