57 resultados para MINIMAX
Resumo:
We study the regret of optimal strategies for online convex optimization games. Using von Neumann's minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary's action sequence, of the difference between a sum of minimal expected losses and the minimal empirical loss. We show that the optimal regret has a natural geometric interpretation, since it can be viewed as the gap in Jensen's inequality for a concave functional--the minimizer over the player's actions of expected loss--defined on a set of probability distributions. We use this expression to obtain upper and lower bounds on the regret of an optimal strategy for a variety of online learning problems. Our method provides upper bounds without the need to construct a learning algorithm; the lower bounds provide explicit optimal strategies for the adversary. Peter L. Bartlett, Alexander Rakhlin
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.
Resumo:
The quick detection of an abrupt unknown change in the conditional distribution of a dependent stochastic process has numerous applications. In this paper, we pose a minimax robust quickest change detection problem for cases where there is uncertainty about the post-change conditional distribution. Our minimax robust formulation is based on the popular Lorden criteria of optimal quickest change detection. Under a condition on the set of possible post-change distributions, we show that the widely known cumulative sum (CUSUM) rule is asymptotically minimax robust under our Lorden minimax robust formulation as a false alarm constraint becomes more strict. We also establish general asymptotic bounds on the detection delay of misspecified CUSUM rules (i.e. CUSUM rules that are designed with post- change distributions that differ from those of the observed sequence). We exploit these bounds to compare the delay performance of asymptotically minimax robust, asymptotically optimal, and other misspecified CUSUM rules. In simulation examples, we illustrate that asymptotically minimax robust CUSUM rules can provide better detection delay performance at greatly reduced computation effort compared to competing generalised likelihood ratio procedures.
Resumo:
We consider online prediction problems where the loss between the prediction and the outcome is measured by the squared Euclidean distance and its generalization, the squared Mahalanobis distance. We derive the minimax solutions for the case where the prediction and action spaces are the simplex (this setup is sometimes called the Brier game) and the \ell_2 ball (this setup is related to Gaussian density estimation). We show that in both cases the value of each sub-game is a quadratic function of a simple statistic of the state, with coefficients that can be efficiently computed using an explicit recurrence relation. The resulting deterministic minimax strategy and randomized maximin strategy are linear functions of the statistic.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
A minimax filter is derived to estimate the state of a system, using observations corrupted by colored noise, when large uncertainties in the plant dynamics and process noise are presen.
Resumo:
This paper presents a method of designing a minimax filter in the presence of large plant uncertainties and constraints on the mean squared values of the estimates. The minimax filtering problem is reformulated in the framework of a deterministic optimal control problem and the method of solution employed, invokes the matrix Minimum Principle. The constrained linear filter and its relation to singular control problems has been illustrated. For the class of problems considered here it is shown that the filter can he constrained separately after carrying out the mini maximization. Numorieal examples are presented to illustrate the results.
Resumo:
This work consists of a theoretical part and an experimental one. The first part provides a simple treatment of the celebrated von Neumann minimax theorem as formulated by Nikaid6 and Sion. It also discusses its relationships with fundamental theorems of convex analysis. The second part is about externality in sponsored search auctions. It shows that in these auctions, advertisers have externality effects on each other which influence their bidding behavior. It proposes Hal R.Varian model and shows how adding externality to this model will affect its properties. In order to have a better understanding of the interaction among advertisers in on-line auctions, it studies the structure of the Google advertisements networ.k and shows that it is a small-world scale-free network.
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.
Resumo:
Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.
Resumo:
Although many studies find that voting in Africa approximates an ethnic census in that voting is primarily along ethnic lines, hardly any of the studies have sought to explain ethnic voting following a rational choice framework. Using data of voter opinions from a survey conducted two weeks before the December 2007 Kenyan elections, we find that the expected benefits associated with a win by each of the presidential candidates varied significantly across voters from different ethnic groups. We hypothesize that decision to participate in the elections was influenced by the expected benefits as per the minimax-regret voting model. We test the predictions of this model using data of voter turnout in the December 2007 elections and find that turnout across ethnic groups varied systematically with expected benefits. The results suggest that individuals participated in the elections primarily to avoid the maximum regret should a candidate from another ethnic group win. The results therefore offer credence to the minimax regret model as proposed by Ferejohn and Fiorina (1974) and refute the Downsian expected utility model.
Resumo:
Background: For most cytotoxic and biologic anti-cancer agents, the response rate of the drug is commonly assumed to be non-decreasing with an increasing dose. However, an increasing dose does not always result in an appreciable increase in the response rate. This may especially be true at high doses for a biologic agent. Therefore, in a phase II trial the investigators may be interested in testing the anti-tumor activity of a drug at more than one (often two) doses, instead of only at the maximum tolerated dose (MTD). This way, when the lower dose appears equally effective, this dose can be recommended for further confirmatory testing in a phase III trial under potential long-term toxicity and cost considerations. A common approach to designing such a phase II trial has been to use an independent (e.g., Simon's two-stage) design at each dose ignoring the prior knowledge about the ordering of the response probabilities at the different doses. However, failure to account for this ordering constraint in estimating the response probabilities may result in an inefficient design. In this dissertation, we developed extensions of Simon's optimal and minimax two-stage designs, including both frequentist and Bayesian methods, for two doses that assume ordered response rates between doses. ^ Methods: Optimal and minimax two-stage designs are proposed for phase II clinical trials in settings where the true response rates at two dose levels are ordered. We borrow strength between doses using isotonic regression and control the joint and/or marginal error probabilities. Bayesian two-stage designs are also proposed under a stochastic ordering constraint. ^ Results: Compared to Simon's designs, when controlling the power and type I error at the same levels, the proposed frequentist and Bayesian designs reduce the maximum and expected sample sizes. Most of the proposed designs also increase the probability of early termination when the true response rates are poor. ^ Conclusion: Proposed frequentist and Bayesian designs are superior to Simon's designs in terms of operating characteristics (expected sample size and probability of early termination, when the response rates are poor) Thus, the proposed designs lead to more cost-efficient and ethical trials, and may consequently improve and expedite the drug discovery process. The proposed designs may be extended to designs of multiple group trials and drug combination trials.^
Consolidation of a wsn and minimax method to rapidly neutralise intruders in strategic installations
Resumo:
Due to the sensitive international situation caused by still-recent terrorist attacks, there is a common need to protect the safety of large spaces such as government buildings, airports and power stations. To address this problem, developments in several research fields, such as video and cognitive audio, decision support systems, human interface, computer architecture, communications networks and communications security, should be integrated with the goal of achieving advanced security systems capable of checking all of the specified requirements and spanning the gap that presently exists in the current market. This paper describes the implementation of a decision system for crisis management in infrastructural building security. Specifically, it describes the implementation of a decision system in the management of building intrusions. The positions of the unidentified persons are reported with the help of a Wireless Sensor Network (WSN). The goal is to achieve an intelligent system capable of making the best decision in real time in order to quickly neutralise one or more intruders who threaten strategic installations. It is assumed that the intruders’ behaviour is inferred through sequences of sensors’ activations and their fusion. This article presents a general approach to selecting the optimum operation from the available neutralisation strategies based on a Minimax algorithm. The distances among different scenario elements will be used to measure the risk of the scene, so a path planning technique will be integrated in order to attain a good performance. Different actions to be executed over the elements of the scene such as moving a guard, blocking a door or turning on an alarm will be used to neutralise the crisis. This set of actions executed to stop the crisis is known as the neutralisation strategy. Finally, the system has been tested in simulations of real situations, and the results have been evaluated according to the final state of the intruders. In 86.5% of the cases, the system achieved the capture of the intruders, and in 59.25% of the cases, they were intercepted before they reached their objective.