1000 resultados para MINERAL-CHEMISTRY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg+Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca+Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti–rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# ≤ 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta dados geológicos, petrográficos e mineralógicos referentes ao granito que hospeda o depósito aurífero Tocantinzinho e objetivou contribuir ao entendimento dos processos hidrotermais associados à sua gênese. O depósito ocorre em biotita monzogranito tardi a pós-tectônico, do subtipo oxidado da série ilmenita, que foi alojado a profundidades de 6 - 9 km. Esse granitoide encontra-se bastante fraturado e localmente brechado, tendo experimentado processos hidrotermais de grau fraco a moderado, os quais geraram duas principais variedades (salame e smoky) sem diferenças mineralógicas ou químicas importantes, porém macroscopicamente muito distintas. Vários tipos de alteração hidrotermal foram reconhecidos nas rochas granitoides, sendo representados principalmente por vênulas e pela substituição de minerais primários. A história hidrotermal teve início com a microclinização, durante a qual o protólito granítico foi em parte transformado na variedade salame. A temperaturas em torno de 330 oC ocorreu a cloritização, que produziu chamosita com XFe na faixa de 0,55 - 0,70. Seguiu-se a sericitização, durante a qual os fluidos mineralizadores precipitaram pirita, calcopirita, esfalerita, galena e ouro. À medida que a alteração progrediu, as soluções se saturaram em sílica e precipitaram quartzo em vênulas. No estágio mais tardio (carbonatação), provavelmente houve mistura entre fluidos aquosos e aquocarbônicos, de que teria resultado a reação entre Ca2+ e CO2 e formação de calcita. A maioria dos sulfetos encontra-se em vênulas, algumas em trama stockwork. O ouro é normalmente muito fino e ocorre principalmente como inclusões submicroscópicas ou ao longo de microfraturas em pirita e quartzo. O depósito Tocantinzinho é muito similar aos depósitos Batalha, Palito e São Jorge, e aos do campo Cuiú-Cuiú. Tipologicamente poderia ser classificado como depósito relacionado a intrusões.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diamant ist das härteste Mineral – und dazu ein Edelstein -, das unter höchstem Druck und hohen Temperaturen in tiefen kontinentalen Regionen der Erde kristallisiert. Die Mineraleinschlüsse in Diamanten werden durch die physikalische Stabilität und chemische Beständigkeit der umgebenden – eigentlich metastabilen -Diamant-Phase geschützt. Aufgrund der koexistierenden Phasenkombination ermöglichen sie, die Mineral-Entwicklung zu studieren, während deren der Einschlüssen und die Diamanten kristallisierten. rnDie Phasenkombinationen von Diamant und Chrom-Pyrop, Chrom-Diopsid, Chromit, Olivin, Graphit und Enstatit nebeneinander (teilweise in Berührungsexistenz) mit Chrom-Pyrop Einschlüssen wurden von neunundzwanzig Diamant-Proben von sechs Standorten in Südafrika (Premier, Koffiefontein, De Beers Pool, Finsch, Venetia und Koingnaas Minen) und Udachnaya (Sibirien/Russland) identifiziert und charakterisiert. Die Mineraleinschlüsse weisen z.T. kubo-oktaedrische Form auf, die unabhängig von ihren eigenen Kristallsystemen ausgebildet werden können. Das bedeutet, dass sie syngenetische Einschlüsse sind, die durch die sehr hohe Formenergie des umgebenden Diamanten morphologisch unter Zwang stehen. Aus zweidiemnsionalen Messungen der ersten Ordnung von charakteristischen Raman-Banden lassen sich relative Restdrucke in Diamanten zwischen Diamant und Einschlussmineral gewinnen; sie haben charakteristische Werte von ca. 0,4 bis 0,9 GPa um Chrom-Pyrop-Einschlüsse, 0,6 bis 2,0 GPa um Chrom-Diopsid-Einschlüsse, 0,3 bis 1,2 GPa um Olivin-Einschlüsse, 0,2 bis 1,0 GPa um Chromit-Einschlüsse, beziehungsweise 0,5 GPa um Graphit Einschlüsse.rnDie kristallstrukturellen Beziehung von Diamanten und ihren monomineralischen Einschlüssen wurden mit Hilfe der Quantifizierung der Winkelkorrelationen zwischen der [111] Richtung von Diamanten und spezifisch ausgewählten Richtungen ihrer mineralischen Einschlüsse untersucht. Die Winkelkorrelationen zwischen Diamant [111] und Chrom-Pyrop [111] oder Chromit [111] zeigen die kleinsten Verzerrungen von 2,2 bis zu 3,4. Die Chrom-Diopsid- und Olivin-Einschlüsse zeigen die Missorientierungswerte mit Diamant [111] bis zu 10,2 und 12,9 von Chrom-Diopsid [010] beziehungsweise Olivin [100].rnDie chemische Zusammensetzung von neun herausgearbeiteten (orientiertes Anschleifen) Einschlüssen (drei Chrom-Pyrop-Einschlüsse von Koffiefontein-, Finsch- und Venetia-Mine (zwei von drei koexistieren nebeneinander mit Enstatit), ein Chromit von Udachnaya (Sibirien/Russland), drei Chrom-Diopside von Koffiefontein, Koingnaas und Udachnaya (Sibirien/Russland) und zwei Olivin Einschlüsse von De Beers Pool und Koingnaas) wurden mit Hilfe EPMA und LA-ICP-MS analysiert. Auf der Grundlage der chemischen Zusammensetzung können die Mineraleinschlüsse in Diamanten in dieser Arbeit der peridotitischen Suite zugeordnet werden.rnDie Geothermobarometrie-Untersuchungen waren aufgrund der berührenden Koexistenz von Chrom-Pyrop- und Enstatit in einzelnen Diamanten möglich. Durchschnittliche Temperaturen und Drücke der Bildung sind mit ca. 1087 (± 15) C, 5,2 (± 0,1) GPa für Diamant DHK6.2 von der Koffiefontein Mine beziehungsweise ca. 1041 (± 5) C, 5,0 (± 0,1) GPa für Diamant DHF10.2 von der Finsch Mine zu interpretieren.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During DSDP Leg 65, a series of holes was drilled into the oceanic basement across the mouth of the Gulf of California to study the composition of the crust and the nature of its construction at a young spreading center. In Holes 483 and 483B, two of the deepest basement holes drilled on this leg, the basement is characterized by an upper sequence of interlayered massive basalts and sediments underlain by a lower sequence of interlayered pillow and massive basalts. Electron microprobe analyses were performed on pyroxene, plagioclase, olivine, spinel, and glass from 14 representative samples of 10 of the 16 major lithologic units. These analyses along with petrographic results can be used to interpret the detailed crystallization history of the basalts. We believe from the results of this study that the basalts were formed by at least a three-stage cooling process, followed by eruption and formation of quench phases. Our data do not support magma mixing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary magmatic phases (spinel, olivine, plagioclase, clinopyroxene, amphibole, and biotite) and secondary phyllosilicates (smectite, chlorite-smectite, and celadonite) were analyzed by electron microprobe in alkalic and tholeiitic dolerites and basalts from Ocean Drilling Program Sites 800, 801, and 802. Aphyric alkalic dolerite sills (Hole 800A) and basalt flows (Holes 801B and 801C) share common mineralogical features: matrix feldspars are strongly zoned from labradorite cores to discrete sodic rims of alkali feldspar with a high Or component, which overlaps that of quench microlites in glassy mesostasis; little fractionated clinopyroxenes are Ti-rich diopsides and augites (with marked aegirine-augite rims at Site 801); rare, brown, Fe**3+-rich amphibole is winchite; and late biotites exhibit variable Ti contents. Alkalic rims to feldspars probably developed at the same time as quenched mesostasis feldspars and late-stage magmatic biotite, and represent the buildup of K-rich hydrous fluids during crystallization. Phenocryst phases in primitive mid-ocean ridge tholeiites from Hole 801C (Mg numbers about 70) have extreme compositions with chrome spinel (Cr/Cr + Al ratios about 0.2-0.4), Ni-rich olivine (Fo90), and highly calcic plagioclase (An90). Later glomerophyric clumps of plagioclase (An75-80) and clinopyroxene (diopside-augite) are strongly zoned and probably reflect rapidly changing melt conditions during upward transport, prior to seafloor quenching. In contrast, phenocryst phases (olivine, plagioclase, and clinopyroxene) in the Hole 802A tholeiites show limited variation and do not have such primitive compositions, reflecting the uniform and different chemical composition of all the bulk rocks. Replacive phyllosilicates in both alkalic and tholeiitic basalts include various colored smectites (Fe-, Mg-, and Al-saponites), chlorite-smectite and celadonite. Smectite compositions typically reflect the replaced host composition; glass is replaced by brown Fe-saponites (variable Fe/Mg ratios) and olivine by greenish Mg-saponites (or Al-rich chlorite-smectite).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microprobe mineral compositions of olivine, plagioclase, clinopyroxene, chrome spinel, ilmenite, and titanomagnetite are presented for 7 samples from 4 flows of hawaiite and one flow of tholeiitic basalt from Hole 430A at Ojin Seamount, 4 samples from 3 flows of alkalic basalt from Hole 432A at Nintoku Seamount, and 29 samples from 2 flows of alkalic basalt and 24 flows of tholeiitic basalt from Holes 433A, 433B, and 433C at Suiko Seamount. The four hawaiite flows from Hole 430A on Ojin Seamount have nearly identical mineralogy. The plagioclase phenocrysts and calculated equilibrium olivine appear to have crystallized at about 1175°C; the groundmass plagioclase crystallized from about 1135° to 1010°C; and the Fe-Ti oxides equilibrated at temperatures from 1000°C to 720°C under oxygen fugacities of 10**-11 to 10**-17. The single tholeiitic flow contains glomerocrysts of plagioclase (An80 to An65) and clinopyroxene (Wo43En46Fsn to Wo42En45Fs13). The plagioclase phenocrysts give calculated temperatures as high as 1400°C, indicating that they were not equilibrated with a magma having the bulk rock composition. The plagioclase groundmass crystallized at 1120° to 1070°C, and the Fe-Ti oxides equilibrated at 1070° to 930°C under oxygen fugacities of 10**-10 to 10**-12. Using mineral compositions of Hawaiian basalts as a guide, we infer that the hawaiite flows were erupted during the post-caldera alkalic eruptive stage and the tholeiite was erupted during the shield-building or caldera collapse stage. The three alkalic basalt flows from Hole 432A on Nintoku Seamount have similar mineralogy, although Flow Units 1 and 2 contain much more abundant plagioclase phenocrysts. The groundmass plagioclase crystallized at temperatures between 1175° and 1000°C. The olivine and plagioclase phenocrysts do not appear to be in equilibrium with the enclosing magmas. The mineral compositions suggest that these samples are intermediate between alkalic basalt and hawaiite; they probably erupted during the post-caldera alkalic stage of eruption. The two analyzed alkalic basalt flows are the two youngest flows recovered at Holes 433A, 433B, and 433C. Flow Unit 1 contains abundant sector-zoned clinopyroxene, and Flow Unit 2 contains rare kink-banded olivine xenocrysts. The plagioclase phenocrysts yield calculated temperatures of 1440° to 1250°C, indicating that they are probably not cognate. Calculated-equilibrium olivine indicates crystallization of olivine at about 1170°C. The Fe-Ti oxides equilibrated at temperatures of 1140° to 870°C under oxygen fugacities of 10**-9 to 10**-14. The groundmass plagioclase crystallized at temperatures of 1178° to 1035 °C. The mineral compositions indicate that these alkalic basalts erupted during the post-caldera alkalic eruptive stage. The 24 analyzed tholeiitic basalts are subdivided on the basis of phenocryst abundances into olivine tholeiites, plagioclase tholeiites, and tholeiites. The crystallization sequence appears to have been chrome spinel, olivine, plagioclase, and clinopyroxene as phenocryst phases, followed by and overlapping with groundmass crystallization of plagioclase (1180° to 920°C), clinopyroxene, and Fe-Ti oxides (1140° to 670°C). At least three flows contain pigeonite. The mineral compositions indicate that all the samples from Flow Unit 4 downward are tholeiitic basalts, although Flow Unit 64 has mineral compositions transitional to those in alkalic basalts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ming deposit, Newfoundland Appalachians, is a metamorphosed (upper greenschist to lower amphibolite facies), Cambro-Ordovician, bimodalmafic volcanogenic massive sulfide (VMS) deposit that consists of several, spatially-associated, elongated orebodies composed of stratabound semimassive to massive sulfides and/or discordant sulfide stringers in a rhyodacitic footwall. Copper is the main commodity; however, the deposit contains precious metal-bearing zones with elevated Au grades. In this study, field observations, microscopy, and micro-analytical tools including electron microprobe, laser ablation inductively coupled plasma mass spectrometry, and secondary ion mass spectrometry were used to constrain the relative timing of precious metal emplacement, the physico-chemical conditions of hydrothermal fluid precipitation, and the sources of sulfur, precious metals, semi-metals and metals. The ore mineral assemblage is complex and indicates an intermediate sulfidation state. Pyrite and chalcopyrite are the dominant ore minerals with minor sphalerite and pyrrhotite, and trace galena, arsenopyrite and cubanite. Additional trace phases include tellurides, NiSb phases, sulfosalts, electrum, AgHg±Au alloys, and oxides. Silver phases and precious metals occur predominantly in semi-massive and massive sulfides as free grains, and as grains spatially associated with arsenopyrite and/or sulfosalts. Precious metal phases occurring between recrystallized pyrite and within cataclastic pyrite are rare. Hence, the complex ore assemblage and textures strongly suggest syngenetic precious metal emplacement, whereas metamorphism and deformation only internally and locally remobilized precious metal phases. The ore assemblage formed from reduced, acidic hydrothermal fluids over a range of temperatures (≈350 to below 260ºC). The abundance of telluride and Ag-bearing tetrahedrite, however, varies strongly between the different orebodies indicating variable ƒTe₂, ƒSe₂, mBi, and mSb within the hydrothermal fluids. The variations in the concentrations of semi-metals and metals (As, Bi, Hg, Sb, Se, Te), as well as Au and Ag, were due to variations in temperature but also to a likely contribution of magmatic fluids into the VMS hydrothermal system from presumably different geothermal reservoirs. Sulfur isotope studies indicate at least two sulfur sources: sulfur from thermochemically-reduced seawater sulfate and igneous sulfur. The source of igneous sulfur is the igneous footwall, direct magmatic fluid/volatiles, or both. Upper greenschist to lower amphibolite metamorphic conditions and deformation had no significant effect on the sulfur isotope composition of the sulfides at the Ming deposit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Depósitos albianos da bacia de São Luís-Grajaú, antigamente conhecidos apenas em subsuperfície como ‘Unidade Indiferenciada’ do Grupo Itapecuru, foram recentemente encontrados ao longo do rio Itapecuru, na parte leste desta bacia. São argilitos avermelhados, esverdeados a cinzas, arenitos estratificados e maciços e subordinadamente calcários, interpretados como depósitos de delta progradante para ENE/E e ESE e conectado a uma plataforma restrita. Para determinar a proveniência de arenitos albianos, foram coletadas 18 amostras para estudos de minerais pesados (fração 0,062-0,125 mm) usando-se microscópio petrográfico convencional e microscópio eletrônico de varredura. Os arenitos foram classificados como quartzo-arenito moderadamente a bem selecionado, cimentado por dolomita, cujos principais minerais pesados são zircão (4-70%), granada (12-74%), turmalina (3-20%), estaurolita (1-9%), rutilo (1-8%) e barita (0-55%), enquanto cianita, anatásio (autigênico), anfibólio (hornblenda), andaluzita, sillimanita, espinélio e ilmenita ocorrem raramente. A maioria dos grãos é irregular angulosa, mas grãos bem arredondados, particularmente de turmalina e zircão, também estão presentes. Texturas superficiais incluem fraturas conchoidais, marcas de percussão em V e pequenos buracos, estes últimos em grãos arredondados de turmalina e zircão, enquanto feições de corrosão estão principalmente presentes em barita (cavidades rômbicas), cianita, estaurolita (superfície mamilar) e granada (facetas bem formadas por dissolução). Grãos de zircão, com texturas de zoneamento oscilatório e razões U/Th ≥ 0,5 e Zr/Hf média de 29, indicam proveniência de granitos e migmatitos, enquanto os tipos de turmalina, determinados como dravita e shorlita, são oriundos, principalmente, de metapelitos e metapsamitos aluminosos e/ou pobres em Al, com menor contribuição de granitos e rochas meta-ultramáficas. As granadas, por sua vez, são ricas em almandina e têm baixos teores dos componentes de espessartita, grossulária e piropo. Suas fontes potenciais são rochas metamórficas de baixo a médio grau e granitos. Com base em análises de minerais pesados e progradação do sistema deltaico para ENE/E e ESE, as áreas mais prováveis como fontes potenciais de arenitos albianos são o cráton São Luís, os cinturões neoproterozóicos Araguaia e Gurupi, bem como a bacia paleozóica do Parnaíba, esta fornecendo sedimentos de grãos arredondados.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As formações Sobreiro e Santa Rosa são resultado de intensas atividades vulcânicas paleoproterozoicas na região de São Félix do Xingu (PA), SE do Cráton Amazônico. A Formação Sobreiro é composta por rochas de fácies de fluxo de lava andesítica, com dacito e riodacito subordinados, além de rochas que compõem a fácies vulcanoclástica, caracterizadas por tufo, lapilli-tufo e brecha polimítica maciça. Essas rochas exibem fenocristais de clinopiroxênio, anfibólio e plagioclásio em uma matriz microlítica ou traquítica. O clinopiroxênio é classificado predominantemente como augita, com diopsídio subordinado, e apresenta caracterísiticas geoquímicas de minerais gerados em rochas de arco magmático. O anfibólio, representado pela magnesiohastingsita, foi formado sob condições oxidantes e apresenta texturas de desequilíbrio, como bordas de oxidação vinculadas à degaseificação por alívio de pressão. As rochas da Formação Santa Rosa foram extravasadas em grandes fissuras crustais de direção NE-SW, têm características de evolução polifásica e compõem uma fácies de fluxo de lava riolítica e riodacítica e uma fácies vulcanoclástica de ignimbritos, lapilli-tufos, tufos de cristais félsicos e brechas polimíticas maciças. Diques métricos e stocks de pórfiros graníticos e granitoides equigranulares completam essa suíte. Fenocristais de feldspato potássico, plagioclásio e quartzo dispersos em matriz de quartzo e feldspato potássico intercrescidos ocorrem nessas rochas. Por meio de análises químicas pontuais dos fenocristais em microssonda eletrônica, foram estimadas as condições de pressão e temperatura de sua formação, sendo que o clinopiroxênio das rochas intermediárias da Formação Sobreiro indica profundidade de formação variável entre 58 e 17,5 km (17,5 - 4,5 kbar), a temperaturas entre 1.294 e 1.082 ºC, enquanto o anfibólio cristalizou-se entre 28 e 15 km (7,8 - 4,1 kbar), o que sugere uma evolução polibárica. Assim, propõe-se um modelo de geração de magma basáltico hidratado com base na fusão parcial de cunha mantélica e no acúmulo na crosta inferior em uma zona quente, a partir da qual os magmas andesíticos e dacíticos são formados pela assimilação de crosta continental e cristalização fracionada.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O depósito de ouro São Jorge, de idade paleoproterozóica, está situado na Província Aurífera do Tapajós, Cráton Amazônico. Ele está hospedado em um anfibólio-biotita-monzogranito constituído por quartzo, feldspato potássico, plagioclásio, anfibólio, biotita, titanita e opacos. Quatro associações minerais foram reconhecidas no depósito. A associação 1, formada durante o estágio magmático, é caracterizada pela presença de anfibólio e andesina-oligoclásio. A associação 2 mostra substituição total do anfibólio e intensa saussuritização do plagioclásio primário; o epidoto é uma fase marcante e a biotita é parcialmente cloritizada. As associações 3 e 4 estão relacionadas aos processos hidrotermais que geraram a mineralização de sulfeto e ouro. A assembléia 3 é dominada por clorita e plagioclásio albítico, com quantidade subordinada de mica branca e, por vezes, biotita. A associação 4 é dominada por mica branca, pirita e carbonatos sendo o resultado de uma alteração fílica com carbonatação associada. O geotermômetro da clorita sugere temperaturas de 300±40 °C para as associações 3 e 4. O geobarômetro do Al na hornblenda indica pressões em torno de 1 kbar para a cristalização dos granitos mineralizados. Condições oxidantes, acima do tampão NNO, prevaleceram durante a gênese dos depósitos. As associações hidrotermais de São Jorge diferem daquelas descritas nos garimpos Joel e Davi e não são dominadas por epidoto, como sugerido em outras áreas da Província Tapajós. Um modelo pórfiro ou intrusion-related são melhor adaptados para o depósito São Jorge. Este último tem similaridades com o depósito Serrinha da Província Juruena e Batalha, na Província Tapajós, e fortes analogias com o sistema hidrotermal Volta Grande no sul do Brasil.