863 resultados para MIGRAINE WITHOUT AURA
Resumo:
Introduction: It is unclear whether patients diagnosed according to International Classification of Headache Disorders criteria for migraine with aura (MA) and migraine without aura (MO) experience distinct disorders or whether their migraine subtypes are genetically related. Aim: Using a novel gene-based (statistical) approach, we aimed to identify individual genes and pathways associated both with MA and MO. Methods: Gene-based tests were performed using genome-wide association summary statistic results from the most recent International Headache Genetics Consortium study comparing 4505 MA cases with 34,813 controls and 4038 MO cases with 40,294 controls. After accounting for non-independence of gene-based test results, we examined the significance of the proportion of shared genes associated with MA and MO. Results: We found a significant overlap in genes associated with MA and MO. Of the total 1514 genes with a nominally significant gene-based p value (pgene-based ≤ 0.05) in the MA subgroup, 107 also produced pgene-based ≤ 0.05 in the MO subgroup. The proportion of overlapping genes is almost double the empirically derived null expectation, producing significant evidence of gene-based overlap (pleiotropy) (pbinomial-test = 1.5 × 10–4). Combining results across MA and MO, six genes produced genome-wide significant gene-based p values. Four of these genes (TRPM8, UFL1, FHL5 and LRP1) were located in close proximity to previously reported genome-wide significant SNPs for migraine, while two genes, TARBP2 and NPFF separated by just 259 bp on chromosome 12q13.13, represent a novel risk locus. The genes overlapping in both migraine types were enriched for functions related to inflammation, the cardiovascular system and connective tissue. Conclusions: Our results provide novel insight into the likely genes and biological mechanisms that underlie both MA and MO, and when combined with previous data, highlight the neuropeptide FF-amide peptide encoding gene (NPFF) as a novel candidate risk gene for both types of migraine.
Resumo:
Migraine without aura is the most common form of migraine, characterized by recurrent disabling headache and associated autonomic symptoms. To identify common genetic variants associated with this migraine type, we analyzed genome-wide association data of 2,326 clinic-based German and Dutch individuals with migraine without aura and 4,580 population-matched controls. We selected SNPs from 12 loci with 2 or more SNPs associated with P values of <1 x 10(-5) for replication testing in 2,508 individuals with migraine without aura and 2,652 controls. SNPs at two of these loci showed convincing replication: at 1q22 (in MEF2D; replication P = 4.9 x 10(-4); combined P = 7.06 x 10(-11)) and at 3p24 (near TGFBR2; replication P = 1.0 x 10(-4); combined P = 1.17 x 10(-9)). In addition, SNPs at the PHACTR1 and ASTN2 loci showed suggestive evidence of replication (P = 0.01; combined P = 3.20 x 10(-8) and P = 0.02; combined P = 3.86 x 10(-8), respectively). We also replicated associations at two previously reported migraine loci in or near TRPM8 and LRP1. This study identifies the first susceptibility loci for migraine without aura, thereby expanding our knowledge of this debilitating neurological disorder.
Resumo:
It is often debated whether migraine with aura (MA) and migraine without aura (MO) are etiologically distinct disorders. A previous study using latent class analysis (LCA) in Australian twins showed no evidence for separate subtypes of MO and MA. The aim of the present study was to replicate these results in a population of Dutch twins and their parents, siblings and partners (N = 10,144). Latent class analysis of International Headache Society (IHS)-based migraine symptoms resulted in the identification of 4 classes: a class of unaffected subjects (class 0), a mild form of nonmigrainous headache (class 1), a moderately severe type of migraine (class 2), typically without neurological symptoms or aura (8% reporting aura symptoms), and a severe type of migraine (class 3), typically with neurological symptoms, and aura symptoms in approximately half of the cases. Given the overlap of neurological symptoms and nonmutual exclusivity of aura symptoms, these results do not support the MO and MA subtypes as being etiologically distinct. The heritability in female twins of migraine based on LCA classification was estimated at .50 (95% confidence intervals [CI] .27 - .59), similar to IHS-based migraine diagnosis (h2 = .49, 95% CI .19-.57). However, using a dichotomous classification (affected-unaffected) decreased heritability for the IHS-based classification (h2 = .33, 95% CI .00-.60), but not the LCA-based classification (h2 = .51, 95% CI .23-.61). Importantly, use of the LCA-based classification increased the number of subjects classified as affected. The heritability of the screening question was similar to more detailed LCA and IHS classifications, suggesting that the screening procedure is an important determining factor in genetic studies of migraine.
Resumo:
Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society (IHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2)=0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine.
Resumo:
Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society UHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2) =0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine. (C) 2004 Wiley-Liss, Inc.
Resumo:
It is often debated whether migraine with aura (MA) and migraine without aura (MO) are etiologically distinct disorders. A previous study using latent class analysis (LCA) in Australian twins showed no evidence for separate subtypes of MO and MA. The aim of the present study was to replicate these results in a population of Dutch twins and their parents, siblings and partners (N = 10,144). Latent class analysis of International Headache Society (IHS)-based migraine symptoms resulted in the identification of 4 classes: a class of unaffected subjects (class 0), a mild form of nonmigrainous headache (class 1), a moderately severe type of migraine (class 2), typically without neurological symptoms or aura (8% reporting aura symptoms), and a severe type of migraine (class 3), typically with neurological symptoms, and aura symptoms in approximately half of the cases. Given the overlap of neurological symptoms and nonmutual exclusivity of aura symptoms, these results do not support the MO and MA subtypes as being etiologically distinct. The heritability in female twins of migraine based on LCA classification was estimated at .50 (95% confidence intervals [0CI} .27 -.59), similar to IHS-based migraine diagnosis (h(2) = .49, 95% Cl .19-.57). However, using a dichotomous classification (affected-unaffected) decreased heritability for the IHS-based classification (h(2) = .33, 95% Cl .00-.60), but not the LCA-based classification (h(2) = .51, 95% Cl. 23-.61). Importantly, use of the LCA-based classification increased the number of subjects classified as affected. The heritability of the screening question was similar to more detailed LCA and IHS classifications, suggesting that the screening procedure is an important determining factor in genetic studies of migraine.
Resumo:
Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C-1026 A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman (R) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P < 0.05). No other significant differences in the alleles or genotypes distributions were found (P > 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C-1026 A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.
Resumo:
OBJECTIVE: To investigate the role of the dopamine receptor genes, DRD1, DRD3, and DRD5 in the pathogenesis of migraine. BACKGROUND: Migraine is a chronic debilitating disorder affecting approximately 12% of the white population. The disease shows strong familial aggregation and presumably has a genetic basis, but at present, the type and number of genes involved is unclear. The study of candidate genes can prove useful in the identification of genes involved in complex diseases such as migraine, especially if the contribution of the gene to phenotypic expression is minor. Genes coding for proteins involved in dopamine metabolism have been implicated in a number of neurologic conditions and may play a contributory role in migraine. Hence, genes that code for enzymes and receptors modulating dopaminergic activity are good candidates for investigation of the molecular genetic basis of migraine. METHODS: We tested 275 migraineurs and 275 age- and sex-matched individuals free of migraine. Genotypic results were determined by restriction endonuclease digestion of polymerase chain reaction products to detect DRD1 and DRD3 alleles and by Genescan analysis after polymerase chain reaction using fluorescently labelled oligonucleotide primers for the DRD5 marker. RESULTS: Results of chi-square statistical analyses indicated that the allele distribution for migraine cases compared to controls was not significantly different for any of the three tested gene markers (chi2 = 0.1, P =.74 for DRD1; chi2 = 1.8, P =.18 for DRD3; and chi2 = 20.3, P =.08 for DRD5). CONCLUSIONS: These findings offer no evidence for allelic association between the tested dopamine receptor gene polymorphisms and the more prevalent forms of migraine and, therefore, do not support a role for these genes in the pathogenesis of the disorder.
Resumo:
Background The C677T variant in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Migraine, with and without aura (MA and MO), is a prevalent and complex neurovascular disorder that may also be affected by genetically influenced hyperhomocysteinaemia. To determine whether the C677T variant in the MTHFR gene is associated with migraine susceptibility we utilised unrelated and family-based case-control study designs. Methods A total of 652 Caucasian migraine cases were investigated in this study. The MTHFR C677T variant was genotyped in 270 unrelated migraine cases and 270 controls as well as 382 affected subjects from 92 multiplex pedigrees. Results In the unrelated case-control sample we observed an over-representation of the 677T allele in migraine patients compared to controls, specifically for the MA subtype (40% vs. 33%) (χ2 = 5.70, P = 0.017). The Armitage test for trend indicated a significant dosage effect of the risk allele (T) for MA (χ2 = 5.72, P = 0.017). This linear trend was also present in the independent family-based sample (χ2 = 4.25, Padjusted = 0.039). Overall, our results indicate that the T/T genotype confers a modest, yet significant, increase in risk for the MA subtype (odds ratio: 2.0 – 2.5). No increased risk for the MO subtype was observed (P > 0.05). Conclusions In Caucasians, the C677T variant in the MTHFR gene influences susceptibility to MA, but not MO. Investigation into the enzyme activity of MTHFR and the role of homocysteine in the pathophysiology of migraine is warranted.
Resumo:
Common migraine, i.e. migraine with (MA) or without aura (MO), is a chronic neurological disorder affecting about 10% of the Caucasian population. In MA, migraine headache is preceded by visual, sensoric and/or dysphasic reversible aura symptoms. Twin and family studies have suggested a multifactorial mode of inheritance for common migraine, and a stronger genetic component for MA than for MO. Since there is no biological or genetic marker to identify common migraine, aura symptoms provide a distinctive character to identify those suspected of suffering from migraine. The aim of this study was to identify MA susceptibility loci in well-phenotyped migraine samples with familial predisposition using different gene mapping methods. Genes coding for endothelin1 and its receptors EDNRA and ENDRB are potential candidate genes for cortical spreading depression (CSD), which is considered to be the underlying mechanism of migraine aura. The role of these genes in MA was studied in 850 Finnish migraine cases and 890 control individuals. Rare homozygous EDNRA SNPs showed nominal association with MA and with the age of onset trait (20 years). This result was also detected in the pooled analysis on 648 German MA cases and 651 control individuals when the test was adjusted for gender and sample origin. Evaluation of SNP genotyping reactions with two different DNA polymerase enzymes ensured that the genotype quality was high, and thus the discovered associations are considered reliable. The role of the 19p13 region was studied in a linkage analysis of 72 Finnish MA families. This region contains two migraine-associated genes: CACNA1A, which is associated with a predisposition to a rare Mendelian form of MA, familial hemiplegic migraine (FHM), and the insulin receptor gene (INSR) that is associated with common migraine. No evidence of linkage between the 19p13 and MA was detected. A novel visual aura locus was mapped to chromosome 9q21-q22 with significant evidence of linkage using a genome-wide linkage approach in 36 Finnish MA families. Five additional, potential loci were also detected. The 9q21-q22 region has previously been linked to occipitotemporal lobe epilepsy and MA, both of which involve prominent visual symptoms. Our result further supports a shared background for these episodic disorders.
Resumo:
Objective.-To determine cortical oscillatory changes involved in migraine visual aura using magnetoencephalography (MEG). Background.-Visual aura in the form of scintillating scotoma precedes migraine in many cases. The involvement of cortical spreading depression within striate and extra-striate cortical areas is implicated in the generation of the disturbance, but the details of its progression, the effects on cortical oscillations, and the mechanisms of aura generation are unclear. Methods.-We used MEG to directly image changes in cortical oscillatory power during an episode of scintillating scotoma in a patient who experiences aura without subsequent migraine headache. Using the synthetic aperture magnetometry method of MEG source imaging, focal changes in cortical oscillatory power were observed over a 20-minute period and visualized in coregistration with the patient's magnetic resonance image. Results.-Alpha band desynchronization in both the left extra-striate and temporal cortex persisted for the duration of reported visual disturbance, terminating abruptly upon disappearance of scintillations. Gamma frequency desynchronization in the left temporal lobe continued for 8 to 10 minutes following the reported end of aura. Conclusions.-Observations implicate the extra-striate and temporal cortex in migraine visual aura and suggest involvement of alpha desynchronization in generation of phosphenes and gamma desynchronization in sustained inhibition of visual function.
Resumo:
Migraine is a debilitating neurovascular condition classified as either migraine with aura or migraine without aura. A significant genetic basis has been implicated in migraine and has probed the role of neurotransmitters, hormones and vascular genes in this disorder. The aim of this review is to highlight the recent genetic discoveries contributing to our understanding of the complex pathogenesis of migraine. The current review will discuss the role of neurotransmitter-related genes in migraine, including the recently identified TRESK and variants of the KCNN3 gene, as well as outlining studies investigating hormone receptor genes, such as ESR1 and PGR, and vascular-related genes, including the MTHFR and NOTCH 3 genes.
Resumo:
Migraine is a painful and debilitating, neurovascular disease. Current migraine head pain treatments work with differing efficacies in migraineurs. The opioid system plays an important role in diverse biological functions including analgesia, drug response and pain reduction. The A118G single nucleotide polymorphism (SNP) in exon 1 of the μ-opioid receptor gene (OPRM1) has been associated with elevated pain responses and decreased pain threshold in a variety of populations. The aim of the current preliminary study was to test whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. This was a preliminary study to determine whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. A total of 153 chronic migraine with aura sufferers were assessed for migraine head pain using the Migraine Disability Assessment Score instrument and classified into high and low pain severity groups. DNA was extracted and genotypes obtained for the A118G SNP. Logistic regression analysis adjusting for age effects showed the A118G SNP of the OPRM1 gene to be significantly associated with migraine pain severity in the test population (P = 0.0037). In particular, G118 allele carriers were more likely to be high pain sufferers compared to homozygous carriers of the A118 allele (OR = 3.125, 95 % CI = 1.41, 6.93, P = 0.0037). These findings suggest that A118G genotypes of the OPRM1 gene may influence migraine-associated head pain in females. Further investigations are required to fully understand the effect of this gene variant on migraine head pain including studies in males and in different migraine subtypes, as well as in response to head pain medication.
Resumo:
Introduction Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) shares common symptoms with migraine. Most CADASIL causative mutations occur in exons 3 and 4 of the Notch 3 gene. This study investigated the role of C381T (rs 3815188) and G684A (rs 1043994) single nucleotide polymorphisms (SNP) in exons 3 and 4, respectively, of the Notch 3 gene in migraine. Results The first part of the study, in a population of 275 migraineurs and 275 control individuals, found a significant association between the C381T variant and migraine, specifically in migraine without aura (MO) sufferers. The G684A variant was also found to be significantly associated with migraine, specifically in migraine with aura (MA) sufferers. A follow-up study in 300 migraineurs and 300 control individuals did not show replicated association of the C381T variant with migraineurs. However, the G684A variant was again shown to be significantly associated with migraine, specifically with MA. Conclusion Further investigation of the G684A variant and the Notch 3 gene is warranted to understand their role in migraine.