3 resultados para MICROTRAP
Resumo:
We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.
Resumo:
We propose a simple single-layer magnetic microtrap configuration which can trap an array of magnetically-trapped Bose-Einstein condensate. The configuration consists of two series of parallel wires perpendicular to each other and all of the crossing points are cut off for maintaining the uniformity of the current. We analyse the trapping potential, the position of trapping centres and the uniformity of the array of the traps. The trapping depth and trapping frequency with different parameters are also calculated. Lastly, the effect of the cut-off crossing points, dissipate power, chip production are introduced concisely.
Resumo:
Catalytic properties of copper thin films deposited in small channels and cavities were tested using Raman microscopy and mass spectroscopy (MS) techniques, mainly. The catalytic surface conditions were addressed visually and chemically by optical microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The experimental conditions of present work induced copper oxidation; eventually a number of carbon species and graphite remained on the catalytic surface. Quartz crystal microbalance and mass spectroscopy data support both adsorption and catalysis phenomena. MS showed CO2 formation during n-hexane heating process but not to 2-propanol, probably due to redox reactions. XPS of copper surface present in the cavity after catalysis tests detected Cu2O and a range of possible carbon species. The adsorption and catalytic performance of copper films deposited in cavities and microchannels were quite similar. A simple miniaturized device for microanalysis was proposed. (C) 2007 Elsevier B.V. All rights reserved.