230 resultados para MICROPYLAR ENDOSPERM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endo-β-mannanase (MAN) family is represented in the Arabidopsis genome by eight members, all with canonical signal peptides and only half of them being expressed in germinating seeds. The transcripts of these genes were localized in the radicle and micropylar endosperm (ME) before radicle protrusion and this expression disappears as soon as the endosperm is broken by the emerging radicle tip. However, only three of these MAN genes, AtMAN5, AtMAN7 and especially AtMAN6 influence the germination time (t50) as assessed by the analysis of the corresponding knock-out lines. The data suggest a possible interaction between embryo and ME regarding the role of MAN during the Arabidopsis germination process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quinoa (Chenopodium quinoa) is a seed crop native to the Andes, that can be used in a variety of food product in a similar manner to cereals. Unlike most plants, quinoa contains protein with a balanced amino acid profile. This makes it an interesting raw material for e.g. dairy product substitutes, a growing market in Europe and U.S. Quinoa can however have unpleasant off-flavours when processed into formulated products. One means of improving the palatability is seed germination. Also, the increased activities of hydrolytic enzymes can have a beneficial influence in food processing. In this thesis, the germination pattern of quinoa was studied, and the influence of quinoa malt was evaluated in a model product. Additionally, to explore its potential for dairy-type products, quinoa protein was isolated from an embryo-enriched milling fraction of non-germinated quinoa and tested for functional and gelation properties. Quinoa seeds imbibed water very rapidly, and most seeds showed radicle protrusion after 8-9 h. The α-amylase activity was very low, and started to increase only after 24 hours of germination in the starchy perisperm. Proteolytic activity was very high in dry ungerminated seeds, and increased slightly over 24 h. A significant fraction of this activity was located in the micropylar endosperm. The incorporation of germinated quinoa in gluten-free bread had no significant effect on the baking properties due to low α-amylase activity. Upon acidification with glucono-δ-lactone, quinoa milk formed a structured gel. The gelation behaviour was further studied using a quinoa protein isolate (QPI) extracted from an embryoenriched milling fraction. QPI required a heat-denaturation step to form gel structures. The heating pH influenced the properties drastically: heating at pH 10.5 led to a dramatic increase in solubility, emulsifying properties, and a formation of a fine-structured gel with a high storage modulus (G') when acidified. Heating at pH 8.5 varied very little from the unheated protein in terms of functional properties, and only formed a randomly aggregated coagulum with a low G'. Further study of changes over the course of heating showed that the mechanism of heat-denaturation and aggregation indeed varied largely depending on pH. The large difference in gelation behaviour may be related to the nature of aggregates formed during heating. To conclude, germination for increased enzyme activities may not be feasible, but the structure-forming properties of quinoa protein could possibly be exploited in dairy-type products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, alpha-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased alpha-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased alpha-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The endosperm of seeds of Sesbania virgata (Cav.) Pers. accumulates galactomannan as a cell wall storage polysaccharide. It is hydrolysed by three enzymes, one of them being alpha-galactosidase. A great amount of protein bodies is found in the cytoplasm of endospermic cells, which are thought to play the major role as a nitrogen reserve in this seed. The present work aimed at understanding how the production of enzymes that degrade storage compounds is controlled. We performed experiments with addition of inhibitors of transcription (actinomycin-d and alpha-amanitin) and translation (cycloheximide) during and after germination. In order to follow the performance of storage mobilisation, we measured fresh mass, protein contents and alpha-galactosidase activity. All the inhibitors tested had little effect on seed germination and seedling development. Actinomycin-d and cycloheximide provoked a slight inhibition of the storage protein degradation and concomitantly lead to an elevation of the alpha-galactosidase activity. Although alpha-amanitin showed some effect on seedling development at latter stages, it presented the former effect and did not change galactomannan degradation performance. Our data suggest that some of the proteases may be synthesised de novo, whereas alpha-galactosidase seems to be present in the endosperm cells probably as an inactive polypeptide in the protein bodies, being probably activated by proteolysis when the latter organelle is disassembled. These evidences suggest the existence of a connection between storage proteins and carbohydrates mobilisation in seeds of S. virgata, which would play a role by assuring a balanced afflux of the carbon and nitrogen to the seedling development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endo-β-mannanases (MAN; EC. 3.2.1.78) catalyze the cleavage of β1[RIGHTWARDS ARROW]4 bonds in mannan polymers and have been associated with the process of weakening the tissues surrounding the embryo during seed germination. In germinating Arabidopsis thaliana seeds, the most highly expressed MAN gene is AtMAN7 and its transcripts are restricted to the micropylar endosperm and to the radicle tip just before radicle emergence. Mutants with a T-DNA insertion in AtMAN7 have a slower germination than the wild type. To gain insight into the transcriptional regulation of the AtMAN7 gene, a bioinformatic search for conserved non-coding cis-elements (phylogenetic shadowing) within the Brassicaceae MAN7 gene promoters has been done, and these conserved motifs have been used as bait to look for their interacting transcription factors (TFs), using as a prey an arrayed yeast library from A. thaliana. The basic-leucine zipper TF AtbZIP44, but not the closely related AtbZIP11, has thus been identified and its transcriptional activation upon AtMAN7 has been validated at the molecular level. In the knock-out lines of AtbZIP44, not only is the expression of the AtMAN7 gene drastically reduced, but these mutants have a significantly slower germination than the wild type, being affected in the two phases of the germination process, both in the rupture of the seed coat and in the breakage of the micropylar endosperm cell walls. In the over-expression lines the opposite phenotype is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During seed germination, the endosperm cell walls (CWs) suffer an important weakening process mainly driven by hydrolytic enzymes, such are endo-?- mannanases (MAN; EC. 3.2.1.78) that catalyze the cleavage of ?1?4 bonds in the mannan-polymers. In Arabidopsis thaliana seeds, endo-?-mannanase activity increases during seed imbibition, decreasing after radicle emergence1. AtMAN7 is the most highly expressed MAN gene in seeds upon germination and their transcripts are restricted to the micropylar endosperm and to the radicle tip just before radicle emergence. Mutants with a T-DNA insertion in this gene (K.O. MAN7) have a slower germination rate than the wild type (t50=34 h versus t50=25 h). To gain insight into the transcriptional regulation of the AtMAN7 gene, a bioinformatic search for conserved non-coding cis-elements (phylogenetic shadowing) within the Brassicaceae orthologous MAN7 gene promoters has been done and these conserved motives have been used as baits to look for their interacting transcription factors (TFs), using as a prey an arrayed yeast library of circa 1,200 TFs from A. thaliana. The basic leucine zipper AtbZIP44, but not its closely related ortholog AtbZIP11, has been thus identified and its regulatory function upon AtMAN7 during seed germination validated by different molecular and physiological techniques, such are RT-qPCR analyses, mRNA Fluorescence in situ Hybridization (FISH) experiments, and by the establishment of the germination kinetics of both over-expression (oex) lines and TDNA insertion mutants in AtbZIP44. The transcriptional combinatorial network through which AtbZIP44 regulates AtMAN7 gene expression during seed germination has been further explored through protein-protein interactions between AtbZIP44 and other bZIP members. In such a way, AtbZIP9 has been identified by yeast two-hybrid experiments and its physiological implication in the control of AtMAN7 expression similarly established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-β-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of β-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24–30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36–42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to β-glucuronidase (GUS) to study their activity pattern. The FIS2∷GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2∷GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA∷GUS has a pattern of activity similar to that of FIS2∷GUS, but FIE∷GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2∷GUS, MEA∷GUS, and FIE∷GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryogenesis has been induced from endosperm callus cultures of sandalwood (Santalum album L.). Viable plantlets developed from the embryoids on subculture to White's basal medium supplemented with 0.5 mg/l of indole acetic acid. Chromosomal analysis of the root tips showed the triploid number 3n = 30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich beta- and gamma-kafirins may limit enzymatic access to internally positioned alpha-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in beta-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.