18 resultados para MICROGAP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The vertical location of the implant-abutment connection influences the periimplant bone morphology. It is unknown, however, whether different microgap configurations cause different bone reactions. Therefore, in this study the bone morphologies of two different implant systems were compared.Material and methods: Three months after tooth extraction in eight mongrel dogs, two grit-blasted screw implants with internal Morse taper connection (ANK group) were placed on one side whereas the contralateral side received two oxidized screw implants with external hex (TIU group). One implant on each side was placed level with the bone (equicrestal), the second implant was inserted 1.5mm below bone level (subcrestal). After 3 months the implants were uncovered. Three months after stage two surgery, histometrical evaluations were performed in order to assess the periimplant bone levels (PBL), the first bone-to-implant contact points (BICP), the width (HBD) and the steepness (SLO) of the bone defect.Results: All implants osseointegrated clinically and histologically. Bone overgrowth of the microgap was seen in ANK implants only. No significant differences between ANK and TIU could be detected in neither vertical position for PBL and BICP. However, a tendency in favor of ANK was visible when the implants were placed subcrestally. In the parameters HBD (ANK equicrestal -0.23mm; TIU equicrestal -0.51mm; ANK subcrestal +0.19mm; TIU subcrestal -0.57mm) and SLO (ANK equicrestal 35.36 degrees; TIU equicrestal 63.22 degrees; ANK subcrestal 20.40 degrees; TIU subcrestal 44.43 degrees) more pronounced and significant differences were noted.Conclusions: Within the limits of this study, it is concluded that different microgap designs cause different shapes and sizes of the periimplant ('dish-shaped') bone defect in submerged implants both in equicrestal and subcrestal positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The vertical location of the implant-abutment connection influences the subsequent reaction of the peri-implant bone. It is not known, however, whether any additional influence is exerted by different microgap configurations. Therefore, the radiographic bone reactions of two different implant systems were monitored for 6 months. Materials and Methods: In eight mongrel dogs, two implants with an internal Morse-taper connection (INT group) were placed on one side of the mandible; the contralateral side received two implants with an external-hex connection (EXT group). on each side, one implant was aligned at the bone level (equicrestal) and the second implant was placed 1.5 mm subcrestal. Healing abutments were placed 3 months after submerged healing, and the implants were maintained for another 3 months without prosthetic loading. At implant placement and after 1, 2, 3, 4, 5, and 6 months, standardized radiographs were obtained, and peri-implant bone levels were measured with regard to microgap location and evaluated statistically. Results: All implants osseointegrated clinically and radiographically. The overall mean bone loss was 0.68 +/- 0.59 mm in the equicrestal INT group, 1.32 +/- 0.49 mm in the equicrestal EXT group, 0.76 +/- 0.49 mm in the subcrestal INT group, and 1.88 +/- 0.81 mm in the subcrestal EXT group. The differences between the INT and EXT groups were statistically significant (paired t tests). The first significant differences between the internal and external groups were seen at month 1 in the subcrestal groups and at 3 months in the equicrestal groups. Bone loss was most pronounced in the subcrestal EXT group. Conclusions: Within the limits of this study, different microgap configurations can cause different amounts of bone loss, even before prosthetic loading. Subcrestal placement of a butt-joint microgap design may lead to more pronounced radiographic bone loss. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:941-946

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The implant-abutment connection (microgap) influences the pen-implant bone morphology. However, it is unclear if different microgap configurations additionally modify bone reactions. This preliminary study aimed to radiographically monitor pen-implant bone levels in two different microgap configurations during 3 months of nonsubmerged healing. Materials and Methods: Six dogs received two implants with internal Morse taper connection (INT group) on one side of the mandible and two implants with external-hex connection (EXT group) on the other side. One implant on each side was positioned at bone level (equicrestal); the second implant was inserted 1.5 mm below the bone crest (subcrestal). Healing abutments were attached directly after implant insertion, and the implants were maintained for 3 months without prosthetic loading. At implant placement and 1, 2, and 3 months, standardized radiographs were taken to monitor pen-implant bone levels. Results: All implants osseointegrated. A total bone loss of 0.48 +/- 0.66 mm was measured in the equicrestal INT group, 0.69 +/- 0.43 mm in the equicrestal EXT group, 0.79 +/- 0.93 mm in the subcrestal INT group, and 1.56 +/- 0.53 mm in the subcrestal EXT group (P>.05, paired t tests). Within the four groups, bone loss over time became significantly greater in the EXT groups than in the INT groups. The greatest bone loss was noted in the subcrestal EXT group. Conclusion: Within the limits of this animal study, it seems that even without prosthetic loading, different microgap configurations exhibit different patterns of bone loss during nonsubmerged healing. Subcrestal positioning of an external butt joint microgap may lead to faster radiographic bone loss. Int J Prosthodont 2011;24:445-452.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: It is unknown whether different micro gap configurations can cause different pen-implant bone reactions. Therefore, this study sought to compare the peri-implant bone morphologies of two implant systems with different implant-abutment connections. Materials and Methods: Three months after mandibular tooth extractions in six mongrel dogs, two oxidized screw implants with an external-hex connection were inserted (hexed group) on one side, whereas on the contralateral side two grit-blasted screw implants with an internal Morse-taper connection (Morse group) were placed. on each side, one implant was inserted level with the bone (equicrestal) and the second implant was inserted 1.5 mm below the bony crest (subcrestal). Healing abutments were inserted immediately after implant placement. Three months later, the peri-implant bone levels, the first bone-to-implant contact points, and the width and steepness of the peri-implant bone defects were evaluated histometrically. Results: All 24 implants osseointegrated clinically and histologically. No statistically significant differences between the hexed group and Morse group were detected for either the vertical position for peri-implant bone levels (Morse equicrestal -0.16 mm, hexed equicrestal -0.22 mm, Morse subcrestal 1.50 mm, hexed subcrestal 0.94 mm) or for the first bone-to-implant contact points (Morse equicrestal -2.08 mm, hexed equicrestal -0.98 mm, Morse subcrestal -1.26 mm, hexed subcrestal -0.76 mm). For the parameters width (Morse equicrestal -0.15 mm, hexed equicrestal -0.59 mm, Morse subcrestal 0.28 mm, hexed subcrestal -0.70 mm) and steepness (Morse equicrestal 25.27 degree, hexed equicrestal 57.21 degree, Morse subcrestal 15.35 degree, hexed subcrestal 37.97 degree) of the pen-implant defect, highly significant differences were noted between the Morse group and the hexed group. Conclusion: Within the limits of this experiment, it can be concluded that different microgap configurations influence the size and shape of the peri-implant bone defect in nonsubmerged implants placed both at the crest and subcrestally. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:540-547

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives The aim of this study was to histomorphometrically evaluate the influence of interimplant distances (ID) and implant placement depth on bone remodeling around contiguous Morse cone connection implants with `platform-shifting` in a dog model. Material and methods Bilateral mandibular premolars of six dogs were extracted, and after 12 weeks, each dog received 8 implants, four placed 1.5 mm subcrestally (SCL) on one side of the mandible and four placed equicrestally (ECL) on the other side, alternating the ID of 2 and 3 mm. The experimental groups were SCL with IDs of 2 mm (2 SCL) and 3 mm (3 SCL) and ECL with IDs of 2 mm (2 ECL) and 3 mm (3 ECL). Metallic crowns were immediately installed. After 8 weeks, the animals were euthanized and histomorphometric analyses were performed to compare bone remodeling in the groups. Results The SCL groups` indices of crestal bone resorption were significantly lower than those of ECL groups. In addition, the vertical bone resorption around the implants was also numerically inferior in the SCL groups, but without statistical significance. No differences were obtained between the different IDs. All the groups presented similar good levels of bone-to-implant contact and histological bone density. Conclusion The subcrestal placement of contiguous Morse cone connection implants with `platform shifting` was more efficient in preserving the interimplant crestal bone. The IDs of 2 and 3 mm did not affect the bone remodeling significantly under the present conditions. To cite this article:Barros RRM, Novaes AB Jr., Muglia VA, Iezzi G, Piattelli A. Influence of interimplant distances and placement depth on peri-implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 371-378.doi: 10.1111/j.1600-0501.2009.01860.x.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Stability of pen-implant crestal bone plays a relevant role relative to the presence or absence of interdental papilla. Several factors can contribute to the crestal bone resorption observed around two-piece implants, such as the presence of a microgap at the level of the implant abutment junction, the type of connection between implant and prosthetic components, the implant positioning relative to the alveolar crest, and the interimplant distance. Subcrestal positioning of dental implants has been proposed to decrease the risk of exposure of the metal of the top of the implant or of the abutment margin, and to get enough space in a vertical dimension to create a harmoniously esthetic emergence profile. Methods: The present retrospective histologic study was performed to evaluate dental implants retrieved from human jaws that had been inserted in an equicrestal or subcrestal position. A total of nine implants were evaluated: five of these had been inserted in an equicrestal position, whereas the other four had been positioned subcrestally (1 to 3 mm). Results: In all subcrestally placed implants, preexisting and newly formed bone was found over the implant shoulder. In the equicrestal implants, crestal bone resorption (0.5 to 1.5 mm) was present around all implants. Conclusion: The subcrestal position of the implants resulted in bone located above the implant shoulder. J Periodontol 2011;82:708-715.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the factors that contribute to the papilla formation and crestal bone preservation between contiguous implants, this animal study clinically and radiographically evaluated the interimplant distances (IDs) of 2 and 3 mm and the placement depths of Morse cone connection implants restored with platform switch. Bilateral mandibular premolars of 6 dogs were extracted, and after 12 weeks, the implants were placed. Four experimental groups were constituted: subcrestally with ID of 2 mm (2 SCL) and 3 mm (3 SCL) and crestally with ID of 2 mm (2 CL) and 3 mm (3 CL). Metallic crowns were immediately installed with a distance of 3 mm between the contact point and the bone crest. Eight weeks later, clinical measurements were performed to evaluate papilla formation, and radiographic images were taken to analyze the crestal bone remodeling. The subcrestal groups achieved better levels of papillae formation when compared with the crestal groups, with a significant difference between the 3 SCL and 3 CL groups (P = .026). Radiographically, the crestal bone preservation was also better in the subcrestal groups, with statistically significant differences between the 2SCL and 2CL groups (P = .002) and between the 3SCL and 3CL groups (P = .008). With the present conditions, it could be concluded that subcrestal implant placement had a positive impact on papilla formation and crestal bone preservation, which could favor the esthetic of anterior regions. However, the IDs of 2 and 3 mm did not show significantly different results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study tested the null hypothesis that different treatments of saliva-contaminated substrate would not affect microgap formation at the dentin walls of bonded restorations. Materials and Methods: Forty freshly extracted human molars received standardized Class V preparations on buccal and lingual surfaces. The specimens were assigned to four experimental groups (n = 20): [G1] no contamination (control group), [G2] saliva contamination (10 s) after etching followed by 5 s air stream; [G3] saliva contamination after etching and rinsed for 10 s; and [G4] re-etching for 10 s after saliva contamination. All specimens were restored with a one-bottle adhesive (Single Bond, 3M ESPE) and microhybrid composite resin (Filtek Z250, 3M ESPE) according to the manufacturer's instructions. The specimens were thermocycled, sectioned through the center of the restoration, and then processed for SEM. Microgaps were measured at the axial wall at 1500X magnification. The data were submitted to Kruskal-Wallis nonparametric statistical analysis at p < 0.05. Results: The data revealed that different groups resulted in a statistically significant difference (p < 0.01) in gap formation. Air drying [G2] and rinsing [G3] the saliva-contaminated dentin resulted in similar microgap values (p > 0.05). However, re-etching the dentin after saliva contamination [G4] increased microgap formation (p < 0.05) when compared with the groups G1 and G2. Although air drying and rinsing produced results comparable to noncontaminated dentin, the presence of microgaps was not completely eliminated. Conclusion: Contaminated saliva did not prevent hybrid layer formation; however, it did reduce the adaptation of the restorative material to bonded surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study evaluated the interchangeability of prosthetic components for external hexagon implants by measuring the precision of the implant/abutment (I/A) interface with scanning electron microscopy. Ten implants for each of three brands (SIN, Conexão, Neodent) were tested with their respective abutments (milled CoCr collar rotational and non-rotational) and another of an alternative manufacturer (Microplant) in randomly arranged I/A combinations. The degree of interchangeability between the various brands of components was defined using the original abutment interface gap with its respective implant as the benchmark dimension. Accordingly, when the result for a given component placed on an implant was equal to or smaller then that gap measured when the original component of the same brand as the implant was positioned, interchangeability was considered valid. Data were compared with the Kruskal-Wallis test at 5% significance level. Some degree of misfit was observed in all specimens. Generally, the non-rotational component was more accurate than its rotational counterpart. The latter samples ranged from 0.6-16.9 µm, with a 4.6 µm median; and the former from 0.3-12.9 µm, with a 3.4 µm median. Specimens with the abutment and fixture from Conexão had larger microgap than the original set for SIN and Neodent (p<0.05). Even though the latter systems had similar results with their respective components, their interchanged abutments did not reproduce the original accuracy. The results suggest that the alternative brand abutment would have compatibility with all systems while the other brands were not completely interchangeable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that peri-implant crestal bone reactions are influenced by both a rough-smooth implant border in one-piece, non-submerged, as well as an interface (microgap [MG] between implant/abutment) in two-piece butt-joint, submerged and non-submerged implants being placed at different levels in relation to the crest of the bone. According to standard surgical procedures, the rough-smooth implant border for implants with a smooth collar should be aligned with the crest of the bone exhibiting a smooth collar adjacent to peri-implant soft tissues. No data, however, are available for implants exhibiting a sandblasted, large-grit and acid-etched (SLA) surface all the way to the top of a non-submerged implant. Thus, the purpose of this study is to histometrically examine crestal bone changes around machined versus SLA-surfaced implant collars in a side-by-side comparison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To evaluate the biologic width dimensions around implants with nonmatching implant-abutment diameters. MATERIALS AND METHODS Five canines had their mandibular premolars and first molars removed bilaterally and replaced with 12 implants that had nonmatching implant-abutment diameters. On one side, six implants were placed in a submerged surgical approach, and the other side utilized a nonsubmerged approach. Two of the implants on each side were placed either 1 mm above, even with, or 1 mm below the alveolar crest. Two months later, gold crowns were attached, and the dogs were sacrificed 6 months postloading. Block sections were processed for histologic and histomorphometric analyses. RESULTS The bone level, connective tissue length, epithelial dimension, and biologic width were not significantly different when the implants were initially placed in a submerged or nonsubmerged surgical approach. The bone level was significantly different around implants placed 1 mm above the crest compared to implants placed even with or 1 mm below the alveolar crest. The connective tissue dimension was not different for any implant level placement. The epithelial dimension and biologic width were significantly greater for implants placed 1 mm below the alveolar crest compared to implants placed even with or 1 mm above the alveolar crest. For five of six implant placements, connective tissue covered the implant/abutment interface. CONCLUSIONS This study reveals a fundamental change in the biologic response to implants with nonmatching implant-abutment diameters. Unlike implants with matching implant-abutment diameters, the connective tissue extended coronally past the interface (microgap). This morphologic tissue alteration represents a significant change in the biologic reaction to implant-abutment interfaces and suggests that marginal inflammation is eliminated or greatly reduced in these implant designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To compare the precision of fit of full-arch implant-supported screw-retained computer-aided designed and computer-aided manufactured (CAD/CAM) titanium-fixed dental prostheses (FDP) before and after veneering. The null-hypothesis was that there is no difference in vertical microgap values between pure titanium frameworks and FDPs after porcelain firing. MATERIALS AND METHODS Five CAD/CAM titanium grade IV frameworks for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI tooth positions 15, 13, 11, 21, 23, 25) were fabricated after digitizing the implant platforms and the cuspid-supporting framework resin pattern with a laser scanner (CARES(®) Scan CS2; Institut Straumann AG, Basel, Switzerland). A bonder, an opaquer, three layers of porcelain, and one layer of glaze were applied (Vita Titankeramik) and fired according to the manufacturer's preheating and fire cycle instructions at 400-800°C. The one-screw test (implant 25 screw-retained) was applied before and after veneering of the FDPs to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from interproximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS All vertical microgaps were clinically acceptable with values <90 μm. No statistically significant pairwise difference (P = 0.98) was observed between the relative effects of vertical microgap of unveneered (median 19 μm; 95% CI 13-35 μm) and veneered FDPs (20 μm; 13-31 μm), providing support for the null-hypothesis. Analysis within the groups showed significantly different values between the five implants of the FDPs before (P = 0.044) and after veneering (P = 0.020), while a monotonous trend of increasing values from implant 23 (closest position to screw-retained implant 25) to 15 (most distant implant) could not be observed (P = 0.169, P = 0.270). CONCLUSIONS Full-arch CAD/CAM titanium screw-retained frameworks have a high accuracy. Porcelain firing procedure had no impact on the precision of fit of the final FDPs. All implant microgap measurements of each FDP showed clinically acceptable vertical misfit values before and after veneering. Thus, the results do not only show accurate performance of the milling and firing but show also a reproducible scanning and designing process.