12 resultados para MGF2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to ~1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical, mechanical, and microstructural properties of MgF2 single layers grown by ion beam sputtering have been investigated by spectrophotometric measurements, film stress characterization, x-ray photoelectron spectroscopy (XPS), x-ray diffraction, and transmission electron microscopy. The deposition conditions, using fluorine reactive gas or not, have been found to greatly influence the optical absorption and the stress of the films as well as their microstructure. The layers grown with fluorine compensation exhibit a regular columnar microstructure and an UV-optical absorption which can be very low, either as deposited or after thermal annealings at very low temperatures. On the contrary, layers grown without fluorine compensation exhibit a less regular microstructure and a high ultraviolet absorption which is particularly hard to cure. On the basis of calculations, it is shown that F centers are responsible for this absorption, whereas all the films were found to be stoichiometric, in the limit of the XPS sensitivity. On the basis of external data taken from literature, our experimental curves are analyzed, so we propose possible diffusion mechanisms which could explain the behaviors of the coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scattering characteristics of multilayer fluoride coatings for 193 nm deposited by ion beam sputtering and the related interfacial roughnesses are investigated. Quarter- and half-wave stacks of MgF2 and LaF3 with increasing thickness are deposited onto CaF2 and fused silica and are systematically characterized. Roughness measurements carried out by atomic force microscopy reveal the evolution of the power spectral densities of the interfaces with coating thickness. Backward-scattering measurements are presented, and the results are compared with theoretical predictions that use different models for the statistical correlation of interfacial roughnesses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With continually increasing demands for improvements to atmospheric and planetary remote-sensing instrumentation, for both high optical system performance and extended operational lifetimes, an investigation to access the effects of prolonged exposure of the space environment to a series of infrared interference filters and optical materials was promoted on the NASA LDEF mission. The NASA Long Duration Exposure Facility (LDEF) was launchd by the Space Shuttle to transport various science and technology experiments both to and from space, providing investigators with the opportunity to study the effects of the space environment on materials and systems used in space-flight applications. Preliminary results to be discussed consist of transmission measurements obtained and processed from an infrared spectrophotometer both before (1983) and after (1990) exposure compared with unexposed control specimens, together with results of detailed microscopic and general visual examinations performed on the experiment. The principle lead telluride (PbTe) and Zinc Sulphide (ZnS) based multilayer filters selected for this preliminary investigation consist of : an 8-12µm low pass edge filter, a 10.6µm 2.5% half bandwidth (HBW) double half-wave narrow bandpass filter, and a 10% HBW triple half-wave wide bandpass filter at 15µm. Optical substrates of MgF2 and KRS-5 (T1BrI) will also be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations of photo-induced structural transformations (PST) and related changes of optical parameters in amorphous chalcogenide layers were further developed towards the establishment of their dependence on the compositional modulation of the material at nanoscale-dimensions (similar to3-10 nm) and possible improvement of optical recording parameters as well. Besides the known amorphous-amorphous PST, photo-stimulated interdiffusion and crystallization in multilayer structures were found as a useful method for amplitude-phase optical relief formation. The last two types of PST were influenced by size restrictions and efficiently operated by the composition and by the modulation period of the layered nanocomposite. Experimental evidences were obtained in Se-, AsSe-, Se0.4Te0.6-containing layered or quasi zero-dimensional structures based on As2S3 or SiOx and MgF2 matrix. Comparison was made with As2S3- and GeS2-based multicomponent layers, containing Se, Te and Ga. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the stabilizing effect of MgF2 on the binary system InF3-BaF2. A complete investigation of the In-Ba-Mg system led to samples up to 5 mm in thickness. Further optimization of this system was achieved by incorporation of other fluorides, resulting in increased resistance to devitrification. Thermal and optical data are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable chemicals currently have a very limited market share due to current low production but biomass is expected to become one of the major renewable energy and fine chemicals sources in the coming years. Bearing in mind the compromise of all nations to climatic change remediation, the industries will need to use efficient catalysts and green processes to meet the requirements of emissions and efficiency. This project is expected to develop new catalysts to convert 1,6-hexanediol to adipic acid through a green approach based on the “nano-catalysis” and “green chemistry” concepts. Supported Au and Pd nanoparticles were used to study one-pot reaction of HDO oxidation to AA using O2 as a final oxidant and H2O as a solvent. Catalytic results showed that under low pressure O2 atmosphere and low temperature (< 120°C) AuNPs supported on basic-supports are more active than acid and amphoteric oxides. The effect of basic oxide (MgO) addition to MgF2 was studied. The study showed that doping of MgF2 with MgO increased significantly the activity of the catalyst. The best results were obtained with the Au/0.4MgF2-0.6MgO sample, which gave the selectivity to AA of 33% at HDO conversion of 62%.