897 resultados para MG ALLOY
Resumo:
An experimental investigation into the effect of microstructural changes, which occur during post-extrusion annealing of a Mg based AZ21 alloy, on tensile and fatigue properties is conducted. Mechanical properties in the as-cast, as-extruded, and microstructural states that correspond to recovery, recrystallization and grain growth stages of annealing are compared. Results show that these microstructural changes do not alter the yield strength of the alloy markedly whereas significant differences were noted in the ultimate tensile strength as well as ductility. The initiation of abnormal grain growth (or secondary recrystallization) renders the tensile stress-strain response elastic perfectly plastic and results in a large drop in ductility, as high as similar to 60% during intermediate stages of abnormal grain growth, vis-A-vis the ductility of the as-extruded alloy. While the fatigue performance of all the wrought alloys is far superior to as expected, abnormal grain growth leads to a marked decrease in the endurance that of the as-cast alloy, limit. Possible microscopic origins of these are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A creep resistant Mg alloy MRI 230D was subjected to laser surface treatment using Nd:YAG laser equipped with a fiber optics beam delivery system in argon atmosphere. The laser surface treatment produced a fine dendritic microstructure and this treatment was beneficial for the corrosion and wear resistance of the alloy. Long-term linear polarisation resistance and Electrochemical Impedance Spectroscopy measurements confirmed that the polarisation resistance values of laser treated material were twice as high as that for the untreated material. This improved behaviour was due to the finer and more homogenous microstructure of the laser treated surface. The laser treatment also increased surface hardness two times and reduced the wear rate by 25% due to grain refinement and solid solution strengthening.
Resumo:
The formation of anomalous indentations, with two opposite faces describing a pin-cushion effect and the other two faces normal, in long elongated grains of an extruded Mg-2Al-1Zn alloy is reported. Subsurface microstructural observations combined with Schmid factor calculations suggest that extension twinning accompanied by basal slip are the reasons for these. Johnson's expanding cavity model is invoked for further substantiation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Present trend of semi-solid processing is directed towards rheocasting route which allows manufacturing of near-net-shape cast components directly from the prepared semi-solid slurry. Generation of globular equi-axed grains during solidification of rheocast components, compared to the columnar dendritic structure of conventional casting routes, facilitates the manufacturing of components with improved mechanical properties and structural integrity. In the present investigation, a cooling slope has been designed and indigenously fabricated to produce semi solid slurry of Al-Si-Mg (A356) alloy and successively cast in a metallic mould. The scope of the present work discusses about development of a numerical model to simulate the liquid metal flow through cooling slope using Eulerian two-phase flow approach and to investigate the effect of pouring temperature on cooling slope semi-solid slurry generation process. The two phases considered in the present model are liquid metal and air. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling slope, following Schiel's equation. The continuity equation, momentum equation and energy equation are solved considering thin wall boundary condition approach. During solidification of the liquid metal, a modified temperature recovery scheme has been employed taking care of the latent heat release and change of fraction of liquid. The results obtained from simulations are compared with experimental findings and good agreement has been found.
Resumo:
The effect of strain rate, (epsilon) over dot, and temperature, T, on the tension-compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 degrees C in compression) as well as dislocation-mediated plasticity (above 250 degrees C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 degrees C with (epsilon) over dot varying between 10(-2) and 10 s(-1). In most of the cases, the stress-strain responses in tension and compression are distinctly different; with compression responses `concaving upward,' due to {10 (1) over bar2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 degrees C. This results in significant levels of TCA at T < 250 degrees C, reducing substantially at high temperatures. At T=150 and 250 degrees C, high (epsilon) over dot leads to high TCA, in particular at T=250 degrees C and (epsilon) over dot=10 s(-1), suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 degrees C; however at T=400 degrees C, as (epsilon) over dot increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T > 250 degrees C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.
Resumo:
The relationship between the as-cast microstructure and creep behaviour of the heat-resistant MRI230D Mg alloy produced by two different casting technologies is investigated. The alloy in both ingot-casting (IC) and high pressure die-casting (HPDC) conditions consists of alpha-Mg, 06 ((Mg,AI)(2)Ca), Al-Mn and Sn-Mg-Ca rich phases. However, the HPDC alloy resulted in relatively finer grain size and higher volume fraction of finer, denser network of eutectic C36 phase in the as-cast microstructure as compared to that of the IC alloy. The superior creep resistance exhibited by the HPDC alloy at all the stress levels and temperatures employed in the present investigation was attributed to the more effective dispersion strengthening effect caused by the presence of finer and denser network of the C36 phase. The increased amount of the eutectic C36 phase was the only change observed in the microstructures of both alloys following creep tests. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This is the first successful attempt to produce Mg-Ce alloys of different texture through different processing routes while keeping the grain size and grain size distribution same. Tensile data shows that contribution of texture to ductility enhancement is primary and that of grain refinement is secondary. The texture resulting from multi-axial forging of extruded billets followed by annealing exhibits the highest ductility (similar to 40%) at room temperature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.
Resumo:
With increasing applied voltage, three types of anodic coatings, passive film, micro-spark ceramic coating and spark ceramic coating were made by micro-arc oxidization (MAO) technique on AZ91D magnesium alloy in alkali-silicate solution. The structure, composition characteristics and the electrochemical properties of coatings were also studied with SEM, XRD and EIS (electrochemical impedance spectroscopy) technique, respectively. It is found that the electrochemical properties are closely related to the structure and composition characteristics of the anodic coatings. At the same time, the characteristics of the three types of anodic coatings differ significantly, among them, the micro-spark ceramic coating, prepared in the voltage range of 170similar to220V exhibits compact, homogeneous structure and highest corrosion-resistance.