991 resultados para METHYLENETETRAHYDROFOLATE REDUCTASE GENE
Resumo:
Background: Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain. Methods: Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects. Results: No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied. Conclusions: In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.
Resumo:
We assessed the effect of a recently described mutation in the MTHFR gene (1298 A --> C) on the risk of deep venous thrombosis (DVT) by determining its prevalence in 190 patients with verified DVT and in age-, race- and gender-matched controls. MTHFR 1298 A --> C was found in 42.1% of patients and in 41.1% of controls. The OR for venous thrombosis was 1.07 (95% CI 0.70-1.65) for heterozygotes and 0.83 (95% CI 0.33-2.08) for homozygotes. The OR for the factor V Leiden (FVL) mutation was 3.40 (95% CI 1.22-9.48), for FII 20210 G --> A was 5.22 (95% CI 1.12-24.2) and for MTHFR 677 C --> T, 1.24 (95% CI 0.82-1.87). No significant increased risk for venous thrombosis was found when MTHFR 1298 A --> C was coinherited with FVL (OR 2.85, 95% CI 0.88-9.23), FIT 20210 G --> A (OR 7.19, 95% CT 0.87-59.4) or MTHFR 677 C --> T (OR 1.44, 95% CT 0.71-2.92). These data do not support a critical role of MTHFR 1298 A --> C in the predisposition to DVT.
Resumo:
Reduction of 5,10-methylenetetrahydrofolate (methyleneTHF), a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate (methylTHF), the primary methyl donor for methionine synthesis, is catalyzed by 5,10-methylenetetrahydrofolate reductase (MTHFR). A common 677 C → T polymorphism in the MTHFR gene results in thermolability and reduced MTHFR activity that decreases the pool of methylTHF and increases the pool of methyleneTHF. Recently, another polymorphism in MTHFR (1298 A → C) has been identified that also results in diminished enzyme activity. We tested whether carriers of these variant alleles are protected from adult acute leukemia. We analyzed DNA from a case–control study in the United Kingdom of 308 adult acute leukemia patients and 491 age- and sex-matched controls. MTHFR variant alleles were determined by a PCR-restriction fragment length polymorphism assay. The MTHFR 677TT genotype was lower among 71 acute lymphocytic leukemia (ALL) cases compared with 114 controls, conferring a 4.3-fold decrease in risk of ALL [odds ratio (OR = 0.23; 95% CI = 0.06–0.81]. We observed a 3-fold reduction in risk of ALL in individuals with the MTHFR 1298AC polymorphism (OR = 0.33; 95% CI = 0.15–0.73) and a 14-fold decreased risk of ALL in those with the MTHFR 1298CC variant allele (OR = 0.07; 95% CI = 0.00–1.77). In acute myeloid leukemia, no significant difference in MTHFR 677 and 1298 genotype frequencies was observed between 237 cases and 377 controls. Individuals with the MTHFR 677TT, 1298AC, and 1298CC genotypes have a decreased risk of adult ALL, but not acute myeloid leukemia, which suggests that folate inadequacy may play a key role in the development of ALL.
Resumo:
A common mutation (C677T) in the gene encoding for methylenetetrahydrofolate reductase (MTHFR) (5-methyltetrahydrofolate:(acceptor) oxidoreductase, EC 1.7.99.5), a key regulatory enzyme in one-carbon metabolism, results in a thermolabile variant of the MTHFR enzyme with reduced activity in vitro. In the present study we used a chromatographic method for folate analysis to test the hypothesis that this mutation would be associated with altered distribution of red blood cell (RBC) folates. An alteration was found as manifested by the presence of formylated tetrahydrofolate polyglutamates in addition to methylated derivatives in the RBCs from homozygous mutant individuals. 5-Methyltetrahydrofolate polyglutamates were the only folate form found in RBCs from individuals with the wild-type genotype. Existence of formylated folates in RBCs only from individuals with the thermolabile MTHFR is consistent with the hypothesis that there is in vivo impairment in the activity of the thermolabile variant of MTHFR and that this impairment results in an altered distribution of RBC folates.
Resumo:
Background/Aim: Hyperhomocysteinemia due to Methylenetetrahydrofolate Reductase (MTHFR) gene, in particular the C677T (Ala222Val) polymorphism were recently associated to steatosis and fibrosis. We analyzed the frequency of MTHFR gene in a cross-sectional study of patients affected by Chronic Hepatitis C (CHC) from Northeast of Brazil. Method: One hundred seven-four untreated patients with CHC were genotyped for the C677T MTHFR. Genomic DNA was extracted from peripheral blood cells and the C677T MTHFR polymorphism was identified by PCR-RFLP. The homocysteine (Hcy) levels were determined by chemiluminescence method. All patients were negative for markers of Wilson's disease, hemochromatosis and autoimmune diseases and have current and past daily alcohol intake less than 100 g/week. Results: Among subjects infected with CHC genotype non-1 the frequency of MTHFR genotypes TT was 9.8% versus 4.4% genotype 1 (p = 0.01). Nevertheless, association was found between the MTHFR genotype TT x CT/CC polymorphism and the degree of steatosis and fibrosis in both hepatitis C genotype (p < 0.05). A significant difference was found on plasma Hcy levels in patients with steatosis regardless of HCV genotype (p = 0.03). Conclusion: Our results indicate that plasma Hcy levels is highly prevalent in subjects with chronic hepatits C with steatosis regardless of HCV genotype and vitamin deficiency. The presence of genotype TT of MTHFR C677T polymorphism was more common in CHC genotype non-1 infected patient regardless of histopathological classification and genotype TT+CT frequencies were significant in the presence of fibrosis grade 1+2 and of steatosis in CHC infected patients from the northeast of Brazil regardless of HCV genotype. The genetic susceptibility of MTHFR C677T polymorphism should be confirmed in a large population.
Resumo:
Background: Folate metabolism is critical to embryonic development, influencing neural tube defects (NTD) and recurrent early pregnancy loss. Polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) have been associated with dizygotic (DZ) twinning through pregnancy loss. Methods: The C677T and A1298C polymorphisms in MTHFR were genotyped in 258 Australasian families (1016 individuals) and 118 Dutch families (462 individuals) of mothers of DZ twins and a population sample of 462 adolescent twin families (1861 individuals). Haplotypes were constructed from the alleles, and transmission of the MTHFR haplotypes to mothers of DZ twins and from parents to twins in the adolescent twin families analysed. Results: The C677T and A1298C were common in all three populations (frequencies > 0.29). There was strong linkage disequilibrium (D'=1) between the variants, showing that specific combinations of alleles (haplotypes) were transmitted together. Three haplotypes accounted for nearly all the variation. There was no evidence of any association between MTHFR genotype and twinning in mothers of twins, or of the loss of specific MTHFR genotypes during twin pregnancies. Conclusions: It is concluded that variation in twinning frequency is not associated with MTHFR genotype.
Resumo:
Introduction: the 5, 10-methylenetetrahydrofolate reductase (MTHFR) is an essential enzyme in folate metabolism; their polymorphisms have been associated with heart disease risk increase, obstetric problems, neural tube defects in fetuses and cancer susceptibility. This gene has a single nucleotide polymorphism, a C-T change at nucleotide 677, which affects significantly its enzymatic activity. Objective: because of the biological importance of this enzyme and the Colombian population genetic heterogeneity characteristic, a study was performed to determine allele and genotype frequencies of MTHFR C677T polymorphism in healthy individuals, taking into account that in Colombia there are only studies that have involved case-control methodology. Methods: we analyzed this polymorphism trough the amplification of the DNA of a 206 students sample population. Additionally, Colombian overall frequencies were calculated, using data from healthy controls reported in other studies. Results: a Hardy-Weinberg disequilibri m was found in the sample tested. For the Colombian data, we found that the global population was in equilibrium. Conclusion: T allele population frequency seems to be under positive selection pressure, which is reflected in the population allele increase, despite its deleterious effect. A Spanish study reported similar results and identified folic acid supplementation on expectant mothers as a probably cause of this change.
Resumo:
Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively). Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.
Resumo:
A new method has been established to define the limits on a spontaneous mutation rate for a gene in Plasmodium falciparum. The method combines mathematical modelling and large-scale in vitro culturing and calculates the difference in mutant frequencies at 2 separate time-points. We measured the mutation rate at 2 positions in the dihydrofolate reductase (DHFR) gene of 3D7, a pyrimethamine-sensitive line of P. fulciparum. This line was re-cloned and an effectively large population was treated with a selective pyrimethamine concentration of 40 nM. We detected point mutations at codon-46 (TTA to TCA) and codon-108 (ACC to AAC), resulting in serine replacing leucine and asparagine replacing serine respectively in the corresponding gene product. The substitutions caused a decrease in pyrimethamine sensitivity. By mathematical modelling we determined that the mutation rate at a given position in DHFR was low and occurred at less than 2(.)5 x 10(-9) mutations/DHFR gene/replication. This result has important implications for Plasmodium genetic diversity and antimalarial drug therapy by demonstrating that even with lon mutation rates anti-malarial resistance will inevitably arise when mutant alleles are selected under drug pressure.
Resumo:
Background: Polymorphisms located in genes involved in the metabolism of folate and some methyl-related nutrients are implicated in colorectal cancer (CRC). Objective: We evaluated the association of 3 genetic polymorphisms [C677T MTHFR (methylene tetrahydrofolate reductase), A2756G MTR (methionine synthase), and C1420T SHMT (serine hydroxymethyltransferase)] with the intake of methyl-donor nutrients in CRC risk. Design: Patients withCRC(n 196) and healthy controls (n 200) matched for age and sex were evaluated for intake of methyl-donor nutrients and the 3 polymorphisms. Results: Except for folate intake, which was significantly lower in patients (P 0.02), no differences were observed in the dietary intake of other methyl-donor nutrients between groups. High intake of folate ( 406.7 g/d) was associated with a significantly lower risk of CRC (odds ratio: 0.67; 95% CI: 0.45, 0.99). The A2756G MTR polymorphism was not associated with the risk of developing CRC. In contrast, homozygosity for the C677TMTHFRvariant (TT) presented a 3.0-fold increased risk of CRC (95% CI: 1.3, 6.7). Similarly, homozygosity for the C1420T SHMT polymorphism also had a 2.6-fold increased risk (95% CI: 1.1, 5.9) of developing CRC. When interactions between variables were studied, low intake of all methyl-donor nutrients was associated with an increased risk ofCRC in homozygous participants for the C677T MTHFR polymorphism, but a statistically significant interaction was only observed for folate (odds ratio: 14.0; 95% CI: 1.8, 108.5). No significant associations were seen for MTR or SHMT polymorphisms. Conclusion: These results show an association between the C677T MTHFR variant and different folate intakes on risk of CRC.
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Resumo:
The cloned dihydrofolate reductase gene of Saccharomyces cerevisiae (DFR 1) is expressed in Escherichia coli. Bacterial strain JF1754 transformed with plasmids containing DFR 1 is at least 5X more resistant to inhibition by the folate antagonist trimethoprim. Expression of yeast DFR 1 in E. coli suggests it is likely that the gene lacks intervening sequences. The 1.8 kbp DNA fragment encoding yeast dhfr activity probably has its own promotor, as the gene is expressed in both orientations in E. coli. Expression of the yeast dhfr gene cloned into M13 viral vectors allowed positive selection of DFR 1 - M13 bacterial transfectants in medium supplemented with trimethoprim. A series of nested deletions generated by nuclease Bal 31 digestion and by restriction endonuclease cleavage of plasmids containing DFR 1 physically mapped the gene to a 930 bp region between the Pst 1 and Sal 1 cut sites. This is consistent with the 21,000 molecular weight attributed to yeast dhfr in previous reports. From preliminary DNA sequence analysis of the dhfr DNA fragment the 3' terminus of DFR 1 was assigned to a position 27 nucleotides from the Eco Rl cut site on the Bam Hi - Eco Rl DNA segment. Several putative yeast transcription termination consensus sequences were identified 3' to the opal stop codon. DFR 1 is expressed in yeast and it confers resistance to the antifolate methotrexate when the gene is present in 2 - 10 copies per cell. Plasmid-dependent resistance to methotrexate is also observed in a rad 6 background although the effect is somewhat less than that conferred to wild-type or rad 18 cells. Integration of DFR 1 into the yeast genome showed an intermediate sensitivity to folate antagonists. This may suggest a gene dosage effect. No change in petite induction in these yeast strains was observed in transformed cells containing yeast dhfr plasmids. The sensitivity of rad 6 , rad 18 and wild-type cell populations to trimethoprim were unaffected by the presence of DFR 1 in transformants. Moreover, trimethoprim did not induce petites in any strain tested, which normally results if dhfr is inhibited by other antifolates such as methotrexate. This may suggest that the dhfr enzyme is not the only possible target of trimethoprim in yeast. rad 6 mutants showed a very low level of spontaneous petite formation. Methotrexate failed to induce respiratory deficient mutants in this strain which suggested that rad 6 might be an obligate grande. However, ethidium bromide induced petites to a level approximately 50% of that exhibited by wild-type and rad 18 strains.