6 resultados para METHYLALUMOXANE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymerized metallocene catalyst 4 was prepared by the co-polymerization of ansa-zirconocene complex [CH3Si(2)]ZrCl2 (3) containing vinyl substituted silane bridge with styrene in the presence of radical initiator. Catalyst 4 was found to display high ethylene polymerization activity of 2.28 x 10(6) g PE/(mol . h) with a viscosity average molecular weight (M-eta) value of 61.6 x 10(3) using methylalumoxane (MAO) as a co-catalyst. The ethylene polymerization has been investigated under different conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene polymerization by zirconocene-B(C6F5)(3) catalysts with various aluminum compounds has been investigated. It is found that the catalytic activity depended on zirconocenes used, and especially on the type of aluminum compounds. For Et(H(4)Ind)(2)ZrCl2 (H(4)Ind : tetrahydroindenyl), the activity decreases in the following order: Me3Al > i-Bu3Al > Et3Al much greater than Et2AlCl. While for Cp2ZrCl2(Cp : cyclopentadienyl), it varies as follows: i-Bu3Al > Me3Al much greater than Et3Al. Furthermore, the activity is significantly affected by the addition mode of the catalytic components, which may imply that the formation of active centers is associated with an existing concentration of catalytic components. Results of thermal behavior of polyethylene (PE) studied by differential scanning calorimetry(DSC) show that crystallinity of the polymer prepared with Et3Al is higher than that with Me3Al or i-Bu3Al. It is also found that the number-average molecular weight ((M) over bar) of the polymers prepared with Me3Al or i-Bu3Al is much higher than that with Et3Al. H-1-NMR studies substantiate that i-Bu3Al is a more efficient alkylation agent of Cp2ZrCl2 in comparison with Me3Al. (C) 1997 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new mono-substituted titanocene, (eta(5)-cyclopentadienyl) [eta(5)-(1-(4-methoxyphenyl) cyclohexyl) cyclopentadienyl] dichlorotitanium (I), has been prepared via a novel modified synthesis, and its X-ray crystal structure has been determined. It crystallizes in the orthorhombic space group P2(1)2(1)2(1) with cell constants a=0.968 0(5) nm, b=1.284 6(5) nm, c=1.694 4(6) nm, Z=4, R=0.066. The I/methylaluminoxane (MAO) catalyst system produces at different polymerization temperatures either an isotactic or a syndiotactic polypropylene, both of which have the combined influence of enantiomorphic-site control and chain-end control, or an atactic polypropylene controlled by Bernoullian propagation mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis, characterization and ethylene polymerization behavior of a set of Tp'MCl3 complexes (4, M = Ti, Tp' HB(3-neopentyl-pyrazolyl)(3)(-) (Tp(NP)); 5, M = Ti, Tp'= HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu)); 6, M = Ti, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(Ph)); 7, M = Zr, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(ph)); 8, M = Zr, Tp' = HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu))) is described. Treatment of these tris(pyrazolyl)borate Group IV compounds with methylalumoxane (MAO) generates active catalysts for ethylene polymerization. For the polymerization reactions performed in toluene at 60 degreesC and 3 atm of ethylene pressure, the activities varied between 1.3 and 5.1 X 10(3) g of PE/mol[M](.)h. The highest activity is reached using more sterically open catalyst precursor 4. The viscosity-average molecular weights ((M-v) over bar) of the PE's produced with these catalyst precursors varying from 3.57 to 20.23 x 10(5) gmol(-1) with melting temperatures in the range of 127-134 degreesC. Further polymerization studies employing 7 varying Al/Zr molar ratio and temperature of polymerization showed that the activity as well as the polymer properties are dependent on these parameters. In that case, higher activity was attained at 60 degreesC. The viscosity-average molecular weights of the polyethylene's decreases with increasing AI/Zr molar ratio. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of TlTp' (Tp' = HB(3-mesitylpyrazolyl)(3)(-) (Tp(Ms)), HB(3-mesitylpyrazolyl)(2)(5-mesitylpyrazolyl)(-) (Tp(Ms)*)) with NiCl(2).6H(2)O affords Tp(Ms)NiCl (1) and Tp(Ms)*NiCl (2) in good yield. The compound 2 undergoes an isomerization process to form [{Tp(Ms)**}NiCl](2) (3) (Tp(Ms)** = HB(5-mesitylpyrazolyl)(2)(3-mesitylpyrazolyl)(-)) in 68% yield. Treatment of the tris(pyrazolyl)-borate nickel compounds 1 and 2 with alkylaluminum cocatalysts such as methylalumoxane (MAO) and trimethylaluminum (TMA) in toluene generates active catalysts for ethylene oligomerization. The compound 1 shows turnover frequencies in the range of (2.2-43.1) x 10(3) h(-1). Oligomerization reaction conditions can be adjusted that lead to selectivities as high as 81% for butene-1.