999 resultados para METHYLALUMINOXANE CATALYST


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mono-substituted titanocene, (eta(5)-cyclopentadienyl) [eta(5)-(1-(4-methoxyphenyl) cyclohexyl) cyclopentadienyl] dichlorotitanium (I), has been prepared via a novel modified synthesis, and its X-ray crystal structure has been determined. It crystallizes in the orthorhombic space group P2(1)2(1)2(1) with cell constants a=0.968 0(5) nm, b=1.284 6(5) nm, c=1.694 4(6) nm, Z=4, R=0.066. The I/methylaluminoxane (MAO) catalyst system produces at different polymerization temperatures either an isotactic or a syndiotactic polypropylene, both of which have the combined influence of enantiomorphic-site control and chain-end control, or an atactic polypropylene controlled by Bernoullian propagation mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soluble NdCl3 center dot 3EHOH (2-ethyl hexanol) in hexane combined with AlEt3 is highly active for isoprene polymerization in hexane. The NdCl3 center dot 3EHOH/AlEt3 has higher activity than the typical binary catalyst NdCl3 center dot 3(i)PrOH (isopropanol)/AlEt3 and ternary catalyst NdV3 (neodymium versatate)/AlEt2Cl/Al(i-Bu)(2)H. The molecular weight of polyisoprenes can be controlled by variation of [Nd], [Al]/[Nd] ratio and polymerization temperature and time. The NdCl3 center dot 3EHOH/AlEt3 catalyst polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 96%), high molecular weight (ca. 10(5)) and relatively narr ow molecular weight distributions (M-w/M-n = 2.0-2.8) simultaneously. More importantly, some living polymerization characteristics were demonstrated: (a) absence of chain termination; (b) linear correlation between M-n and polymer yield; (c) increment of molecular weight in the 'seeding' polymerization. Though some deviation from the typical living polymerization such as molecular weight distribution is not narrow enough and the line of M-n and polymer yield does not extrapolate to zero, controlled polymerization with the current catalyst can still be concluded.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poly(4 - vinylpyridine)/silica( PVP/SiO2) organic - inorganic nanoscale hybrid was prepared using sol - gel method, in which PVP was used as an organic component and TEOS as a SiO2 precusor, This hybrid was used as CpTiCl3 support. The XPS and IR measurements showed that two kinds of catalytic active site were formed through analyzing the interaction mode between support and CpTiCl3. The results of styrene polymerization showed that syndiotactic was the highest at 50 degreesC. The catalytic activity was 1.09 x 10(6) g PS/ (mol Ti . h) at 70 degreesC when n(Al)/n(Ti) = 1500. GPC results showed a bimodal molecular weight distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first aryldiimine NCN-pincer ligated rare earth metal dichlorides (2,6-(2,6-C6H3R2N=CH)(2)C6H3)LnCl(2)(THF)(2) (Ln = Y, R = Me (1), Et (2), Pr (3); R = Et, Ln = La (4), Nd (5), Gd (6), Sm (7), Eu (8), Tb (9), Dy (10), Ho (11), Yb (12), Lu (13)) were successfully synthesized via transmetalation between 2,6-(2,6-C2H3-R2N=CH)(2)-C6H3Li and LnCl(3)(THF)(1 similar to 3.5). These complexes are isostructural monomers with two coordinating THF molecules, where the pincer ligand coordinates to the central metal ion in a kappa C:kappa N: kappa N' tridentate mode, adopting a meridional geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fe(II) pyridinebisimine complexes activated with trialkylaluminium or modified methylaluminoxane (MMAO) as catalysts were employed for the polymerization of methyl methacrylate. Polymer yields, activities and polymer molecular weights as well as molecular weight distributions can be controlled over a wide range by the variation of the structures of the Fe(II) pyridinebisimine complexes and the reaction parameters such as Al/Fe molar ratio, monomer/catalyst molar ratio, monomer concentration, reaction temperature and time applied to the polymerization of methyl methacrylate. Under optimum condition, the catalytic activity of Fe(II) complex is of up to 74.5 kg(polym)/mol(Fe)h.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethylene homopolymerizations and copolymerizations were catalyzed by zirconocene catalysts entrapped inside functionalized. montmorillonites that had been rendered organophilic via the ion exchange of the interlamellar cations of layered montmorillonite with hydrochlorides Of L-amino acids (AAH(+)Cl(-)) or their methyl esters (MeAAH(+)Cl(-)), with or without the further addition of hexadecyltrimethylammonium bromide (C16H33N+Me3Br-; R4N+Br-). In contrast to the homogeneous CP2ZrCl2/methylaluminoxane catalyst for ethylene homopolymerizations and copolymerizations with 1-octene, the intercalated Cp2ZrCl2 activated by methylaluminoxane for ethylene homopolymerizations and copolymerizations with 1-octene proved to be more effective in the synthesis of polyethylenes with controlled molecular weights, chemical compositions and structures, and properties, including the bulk density. The effects of the properties of the organic guests on the preparation and catalytic performance of the intercalated zirconocene catalysts were studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An investigation has been undertaken by use of ESCA in the characterization of the central metal(Zr) of dichlorozirconocene/methylaluminoxane homogeneous olefin polymerization catalyst. The change of electron density shown by a shift in ESCA signals (181.8 - 182.7eV) indicates that the catalytic species are ''cation-like''. Within the range of detecting sensitivity of ESCA spectrometer, only a part of the new catalytic derivative was formed. The influence of complexion time and Al : Zr ratio on the formation of the catalytic zirconocene cation has also been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT-Si) supported catalyst, was developed. MT-Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT-Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay-silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconocene catalyst was heterogenized inside an organosilane-modified montmorillonite (MMT) pretreated by calcination and acidization, for supported catalyst systems with well-spaced alpha-olefin polymerization active centers. The varied pretreatment and modification conditions of montmorillonite are efficient for supported zirconocene catalysts in control of polyethylene microstructures, in particular, molecular weight distribution. In contrast to other supported catalyst systems, Cp2ZrCl2/modified montmorillonite(MMT-7)-supported catalysts with a distinct interlayer structure catalyzed ethylene homopolymerization and copolymerization with I-octene activated by methylaluminoxane (MAO), resulting in polymers with a bimodal molecular weight distribution (MWD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethylene-propylene copolymerization, using [(Ph)NC(R-2)CHC(R-1)O](2)TiCl2 (R-1 = CF3, Ph, or t-Bu; R-2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High-molecular-weight ethylene-propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R-1 and R-2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R-1 and R-2, one complex (R-1 = CF3; R-2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with C-13 NMR to determine the methylene sequence distribution and number-average sequence lengths of uninterrupted methylene carbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of 2,6-bis(imino)pyridyl iron and cobalt complexes bearing p-substituent [2,6-(ArN=CMe)(2)C5H3N]-MCl2 (Ar=2,6-Me2C6H3, 2,4,6-Me3C6H2, 2,6-Me-2-4-BrC6H2, 2,6-Me-2-4-ClC6H2, 2,4-Me-2-6-BrC6H2, 2,4-Me-(2)-6-ClC6H2, while M=Fe, Co) have been synthesized and investigated as catalysts for ethylene polymerization in the presence of modified methylaluminoxane as a cocatalyst. The electron effect and positions of the substitueni of pyridinebisimine ligands were observed to affect considerably catalyst activity and polymer property.