33 resultados para METASTABILITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the two Higgs doublet model, there is the possibility that the vacuum where the universe resides in is metastable. We present the tree-level bounds on the scalar potential parameters which have to be obeyed to prevent that situation. Analytical expressions for those bounds are shown for the most used potential, that with a softly broken Z(2) symmetry. The impact of those bounds on the model's phenomenology is discussed in detail, as well as the importance of the current LHC results in determining whether the vacuum we live in is or is not stable. We demonstrate how the vacuum stability bounds can be obtained for the most generic CP-conserving potential, and provide a simple method to implement them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism is used to study the magnetic properties of individual iron nanoparticles with sizes ranging from 20 down to 8 nm. While the magnetocrystalline anisotropy of bulk iron suggests superparamagnetic behavior in this size range, ferromagnetically blocked particles are also found at all sizes. Spontaneous transitions from the blocked state to the superparamagnetic state are observed in single particles and suggest that the enhanced magnetic energy barriers in the ferromagnetic particles are due to metastable, structurally excited states with unexpected life times

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in metastability exchange optical pumping (MEOP) of 3He at high laser powers, with its various applications, but also at high gas pressures p3 and high magnetic field strengths B, have provided strong motivation for revisiting the understanding and for investigating the limitations of this powerful technique. For this purpose, we present systematic experimental and theoretical studies of efficiency and of relaxation mechanisms in B≤30 mT and p3=0.63−2.45 mbar. 3He nuclear polarisation is measured by light absorption in longitudinal configuration where weak light beams at 1083 nm parallel to magnetic field and cell axis with opposite circular polarisations are used to probe the distribution of populations in the metastable state. This method is systematically tested to evaluate potential systematic biases and is shown to be reliable for the study of OP dynamics despite the redistribution of populations by OP light. Nuclear polarisation loss associated to the emission of polarised light by the plasma discharge used for MEOP is found to decrease above 10 mT, as expected, due to hyperfine decoupling in highly excited states. However, this does not lead to improved MEOP efficiency at high laser power. We find clear evidence of additional laser-induced relaxation instead. The strong OP-enhanced polarisation losses, currently limiting MEOP performances, are quantitatively investigated using an angular momentum budget approach and a recently developed comprehensive model that describes the combined effects of OP, ME and relaxation, validated by comparison to experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO 2 2+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340±0.010 eV. The fragmentation of energy selected CO 2 2+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from ∼38.7 to ∼41 eV above the ground state of neutral CO 2 has been observed in the experimental time window of ∼0.1-2.3 μs with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO ++O + formation in indirect dissociative double photoionization below the threshold for formation of CO 2 2+. The threshold for CO ++O + formation is found to be 35.56±0.10 eV or lower, which is more than 2 eV lower than previous measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organismal development, homeostasis, and pathology are rooted in inherently probabilistic events. From gene expression to cellular differentiation, rates and likelihoods shape the form and function of biology. Processes ranging from growth to cancer homeostasis to reprogramming of stem cells all require transitions between distinct phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity and dynamics with which such transitions occur is central to understanding natural biological phenomena and is critical for therapeutic interventions.

While these processes may produce robust population-level behaviors, decisions are made by individual cells. In certain circumstances, these minuscule computing units effectively roll dice to determine their fate. And while the 'omics' era has provided vast amounts of data on what these populations are doing en masse, the behaviors of the underlying units of these processes get washed out in averages.

Therefore, in order to understand the behavior of a sample of cells, it is critical to reveal how its underlying components, or mixture of cells in distinct states, each contribute to the overall phenotype. As such, we must first define what states exist in the population, determine what controls the stability of these states, and measure in high dimensionality the dynamics with which these cells transition between states.

To address a specific example of this general problem, we investigate the heterogeneity and dynamics of mouse embryonic stem cells (mESCs). While a number of reports have identified particular genes in ES cells that switch between 'high' and 'low' metastable expression states in culture, it remains unclear how levels of many of these regulators combine to form states in transcriptional space. Using a method called single molecule mRNA fluorescent in situ hybridization (smFISH), we quantitatively measure and fit distributions of core pluripotency regulators in single cells, identifying a wide range of variabilities between genes, but each explained by a simple model of bursty transcription. From this data, we also observed that strongly bimodal genes appear to be co-expressed, effectively limiting the occupancy of transcriptional space to two primary states across genes studied here. However, these states also appear punctuated by the conditional expression of the most highly variable genes, potentially defining smaller substates of pluripotency.

Having defined the transcriptional states, we next asked what might control their stability or persistence. Surprisingly, we found that DNA methylation, a mark normally associated with irreversible developmental progression, was itself differentially regulated between these two primary states. Furthermore, both acute or chronic inhibition of DNA methyltransferase activity led to reduced heterogeneity among the population, suggesting that metastability can be modulated by this strong epigenetic mark.

Finally, because understanding the dynamics of state transitions is fundamental to a variety of biological problems, we sought to develop a high-throughput method for the identification of cellular trajectories without the need for cell-line engineering. We achieved this by combining cell-lineage information gathered from time-lapse microscopy with endpoint smFISH for measurements of final expression states. Applying a simple mathematical framework to these lineage-tree associated expression states enables the inference of dynamic transitions. We apply our novel approach in order to infer temporal sequences of events, quantitative switching rates, and network topology among a set of ESC states.

Taken together, we identify distinct expression states in ES cells, gain fundamental insight into how a strong epigenetic modifier enforces the stability of these states, and develop and apply a new method for the identification of cellular trajectories using scalable in situ readouts of cellular state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxide based diluted magnetic semiconductor (DMS) materials have been a subject of increasing interest due to reports of room temperature ferromagnetism in several systems and their potential use in the development of spintronic devices. However, concerns on the stability of the magnetic properties of different DMS systems have been raised. Their magnetic moment is often unstable, vanishing with a characteristic decay time of weeks or months, which precludes the development of real applications. This paper reports on the ferromagnetic properties of two-year-aged Ti1-xCoxO2-δ reduced anatase nanopowders with different Co contents (0.03≤x≤0.10). Aged samples retain rather high values of magnetization, remanence and coercivity which provide strong evidence for a quite preserved long-range ferromagnetic order. In what concern Co segregation, some degree of metastability of the diluted Co doped anatase structure could be inferred in the case of the sample with the higher Co content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recientes investigaciones en el campo de los materiales cerámicos han dado cuenta de la importancia de la metaestabilidad para obtener estructuras con características singulares. Durante la consolidación del material las fases mestaestables se transforman en una estructura donde se produce la inhibición del crecimiento de grano. Este efecto es una consecuencia directa de la inmiscibilidad de dos fases en estado sólido. Los nanocomposites conseguidos, gracias a su pequeño tamaño de grano y a su estructura uniforme, exhiben unas interesantes propiedades como elevada dureza y tenacidad. Estas fases metaestables pueden ser producidas por diversas técnicas entre las que se encuentra la proyección térmica. En concreto en este trabajo se ha empleado la Proyección por plasma (APS). Las fases de partida inmiscibles, son fundidas y homogeneizadas durante su corta estancia en la zona caliente del plasma. Seguidamente, las partículas fundidas y aceleradas por el plasma, se someten a un enfriamiento rápido o temple (quenching) en un medio líquido, como el agua o en un substrato enfriado con nitrógeno líquido, formándose a través de este proceso las fases metaestables. El principal objetivo de este trabajo ha sido la obtención de polvos cerámicos metastables a través de la aplicación de APS y el establecimiento de un proceso de temple conducente a la formación de fases metastables así como la caracterización estructural de éstas. Como última etapa del trabajo se han estudiado los materiales nanoestructurados conseguidos tras realizar tratamientos térmicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing pharmaceutical interest, among others, in the polymorphic composition of the emerging solid end-products from production processes has been traced to the need for attainment of high product purity. This is more so as the presence of different polymorphs may constitute physical impurity of the product. Hence, the need for optimization of the yield of desired product component(s) through controlled crystallization kinetics for instance. This study was carried out to investigate the impact of pulsed electric field (PEF) irradiation on the crystal morphology of glycine obtained by cooling crystallization (without seeding) from commercial glycine sample in distilled deionized water solution. In doing so, three different pulse frequencies (294, 950 and 145 Hz) and a case without PEF were studied at three cooling rates (5, 10 and 20 ºC/h). The crystal products obtained were analyzed for polymorphic composition by powder x-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy while the particles characterization was done on Morphologi G3. The results obtained from this study showed that pulsed electric field irradiation had significant impact on metastability of the aqueous solution as well as on the polymorphic composition of the end product. With increasing PEF frequency applied, nucleation started earlier and the γ-glycine polymorph content of the product crystals increased. These were found to have been aided by cooling rate, as the most significant effect was observed at 5 ºC/h. It was also discovered that PEF application had no measurable impact on the pH of the aqueous solution as well as the size distribution of the particles. Cooling on the contrary was believed to be responsible for the broadening of the particle size distribution with a downward shift of the lower limit of the raw material from about 100 μm to between 10 and 50 μm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water geochemistry is a very important tool for studying the water quality in a given area. Geology and climate are the major natural factors controlling the chemistry of most natural waters. Anthropogenic impacts are the secondary sources of contamination in natural waters. This study presents the first integrative approach to the geochemistry and water quality of surface waters and Lake Qarun in the Fayoum catchment, Egypt. Moreover, geochemical modeling of Lake Qarun was firstly presented. The Nile River is the main source of water to the Fayoum watershed. To investigate the quality and geochemistry of this water, water samples from irrigation canals, drains and Lake Qarun were collected during the period 2010‒2013 from the whole Fayoum drainage basin to address the major processes and factors governing the evolution of water chemistry in the investigation area. About 34 physicochemical quality parameters, including major ions, oxygen isotopes, trace elements, nutrients and microbiological parameters were investigated in the water samples. Multivariable statistical analysis was used to interpret the interrelationship between the different studied parameters. Geochemical modeling of Lake Qarun was carried out using Hardie and Eugster’s evolutionary model and a model simulated by PHREEQC software. The crystallization sequence during evaporation of Lake Qarun brine was also studied using a Jänecke phase diagram involving the system Na‒K‒Mg‒ Cl‒SO4‒H2O. The results show that the chemistry of surface water in the Fayoum catchment evolves from Ca- Mg-HCO3 at the head waters to Ca‒Mg‒Cl‒SO4 and eventually to Na‒Cl downstream and at Lake Qarun. The main processes behind the high levels of Na, SO4 and Cl in downstream waters and in Lake Qarun are dissolution of evaporites from Fayoum soils followed by evapoconcentration. This was confirmed by binary plots between the different ions, Piper plot, Gibb’s plot and δ18O results. The modeled data proved that Lake Qarun brine evolves from drainage waters via an evaporation‒crystallization process. Through the precipitation of calcite and gypsum, the solution should reach the final composition "Na–Mg–SO4–Cl". As simulated by PHREEQC, further evaporation of lake brine can drive halite to precipitate in the final stages of evaporation. Significantly, the crystallization sequence during evaporation of the lake brine at the concentration ponds of the Egyptian Salts and Minerals Company (EMISAL) reflected the findings from both Hardie and Eugster’s evolutionary model and the PHREEQC simulated model. After crystallization of halite at the EMISAL ponds, the crystallization sequence during evaporation of the residual brine (bittern) was investigated using a Jänecke phase diagram at 35 °C. This diagram was more useful than PHREEQC for predicting the evaporation path especially in the case of this highly concentrated brine (bittern). The predicted crystallization path using a Jänecke phase diagram at 35 °C showed that halite, hexahydrite, kainite and kieserite should appear during bittern evaporation. Yet the actual crystallized mineral salts were only halite and hexahydrite. The absence of kainite was due to its metastability while the absence of kieserite was due to opposed relative humidity. The presence of a specific MgSO4.nH2O phase in ancient evaporite deposits can be used as a paleoclimatic indicator. Evaluation of surface water quality for agricultural purposes shows that some irrigation waters and all drainage waters have high salinities and therefore cannot be used for irrigation. Waters from irrigation canals used as a drinking water supply show higher concentrations of Al and suffer from high levels of total coliform (TC), fecal coliform (FC) and fecal streptococcus (FS). These waters cannot be used for drinking or agricultural purposes without treatment, because of their high health risk. Therefore it is crucial that environmental protection agencies and the media increase public awareness of this issue, especially in rural areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.