162 resultados para METALLICITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BNbased nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio density functional calculations were performed to study finite-length zigzag (7, 0) @ (16, 0) double-walled carbon nanotubes (DWCNTs) with H-termination at the open ends. We find that such a DWCNT nanodot displays a very large magnetic moment at the zigzag edges and the ground state displays symmetric anti-ferromagnetic coupling. When an external electric field is applied along the direction of tube axis, a gap is opened for one spin channel, whereas another spin channel remains metallic, i.e. half metallicity occurs. Our results suggest an important new avenue for the development of CNT-based spintronic materials with enhanced properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vast majority of elements are metallic in the liquid state. The latent heat of vapourization, ΔHv, of such elements is greater than the critical value of not, vert, similar 42 kJ mol−1 (0.44 eV mol−) which demarcates metals from non-metals. It is shown that ΔHv can be related to the Fermi energy as well as to the Herzfeld criterion involving atomic polarizability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present thermal and electrical transport measurements of low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localized regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance h/e(2), the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in noninteracting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have estimated a metallicity map of the Large Magellanic Cloud (LMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of 4 degrees-5 degrees, derived using photometric data and calibrated using spectroscopic data of Red Giant Branch (RGB) stars. We identify the RGB in the V, (V - I) colour-magnitude diagrams of small subregions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a subregion, and calibrate the RGB slope to metallicity using spectroscopic data for field and cluster red giants in selected subregions. The average metallicity of the LMC is found to be Fe/H] = -0.37 dex (sigmaFe/H] = 0.12) from MCPS data, and Fe/H] = -0.39 dex (sigmaFe/H] = 0.10) from OGLE III data. The bar is found to be the most metal-rich region of the LMC. Both the data sets suggest a shallow radial metallicity gradient up to a radius of 4 kpc (-0.049 +/- 0.002 dex kpc(-1) to -0.066 +/- 0.006 dex kpc(-1)). Subregions in which the mean metallicity differs from the surrounding areas do not appear to correlate with previously known features; spectroscopic studies are required in order to assess their physical significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously published intermediate to hi,oh resolution spectroscopic observations of approximately 80 early B-type main-sequence stars situated in 19 Galactic open clusters/associations with Galactocentric distances distributed over 6 less than or equal to R-g less than or equal to 18 kpc. This current study collates and re-analyses these equivalent- width datasets using LTE and non-LTE model atmosphere techniques, in order to determine the stellar atmospheric parameters and abundance estimates for C, N, O, Mg, Al and Si. The latter should be representative of the present-day Galactic interstellar medium. Our extensive observational dataset permits the identification of sub-samples of stars with similar atmospheric parameters and of homogeneous subsets of lines. As such, this investigation represents the most extensive and systematic study of its kind to date. We conclude that the distribution of light elements (CI O, Mg & Si) in the Galactic disk can be represented by a linear, radial gradient of -0.07 +/- 0.01 dex kpc(-1) Our results for nitrogen and oxygen viz. (-0.09 +/- 0.01 dex kpc(-1) and -0.067 +/- 0.008 dex kpc(-1)) are in excellent agreement with that found from the study of HII regions. We have also examined our datasets for evidence of an abrupt discontinuity in the metallicity of the Galactic disk near a Galactocentric distance of 10 kpc (see Twarog et al. 1997). However, there is no evidence to suggest that our data would be better fitted with a two-zone model. Moreover, we observe a N/O gradient of -0.04 +/- 0.02 dex kpc(-1) which is consistent with that found for other spiral galaxies (Vila- Costas gr Edmunds 1993).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopic analyses of 7 SMC B-type supergiants and 1 giant have been undertaken using high resolution optical data obtained on the VLT with UVES. FASTWIND, a non-LTE, spherical, line-blanketed model atmosphere code was used to derive atmospheric and wind parameters of these stars as well as their absolute abundances. Mass-loss rates, derived from H-alpha profiles, are in poor agreement with metallicity dependent theoretical predictions. Indeed the wind-momenta of the SMC stars appear to be in good agreement with the wind-momentum luminosity relationship (WLR) of Galactic B-type stars, a puzzling result given that line-driven wind theory predicts a metallicity dependence. However the galactic stars were analysed using unblanketed model atmospheres which may mask any dependence on metallicity. A mean nitrogen enhancement of a factor of 14 is observed in the supergiants whilst only an enrichment of a factor of 4 is present in the giant, AV216. Similar excesses in nitrogen are observed in O-type dwarfs and supergiants in the same mass range, suggesting that the additional nitrogen is produced while the stars are still on the main-sequence. These nitrogen enrichments can be reproduced by current stellar evolution models, which include rotationally induced mixing, only if large initial rotational velocities of 300 kin s(-1) are invoked. Such large rotational velocities appear to be inconsistent with observed v sin i distributions for O-type stars and B-type supergiants. Hence it is suggested that the currently available stellar evolution models require more efficient mixing for lower rotational velocities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Galactic Centre is the most active and heavily processed region of the Milky Way, so it can be used as a stringent test for the abundance of deuterium (a sensitive indicator of conditions in the first 1,000 seconds in the life of the Universe). As deuterium is destroyed in stellar interiors, chemical evolution models 1 predict that its Galactic Centre abundance relative to hydrogen is D/H = 5 x 10(-12), unless there is a continuous source of deuterium from relatively primordial (low-metallicity) gas. Here we report the detection of deuterium (in the molecule DCN) in a molecular cloud only 10 parsecs from the Galactic Centre. Our data, when combined with a model of molecular abundances, indicate that D/H = (1.7 +/- 0.3) x 10(-6), five orders of magnitude larger than the predictions of evolutionary models with no continuous source of deuterium. The most probable explanation is recent infall of relatively unprocessed metal-poor gas into the Galactic Centre (at the rate inferred by Wakker(2)). Our measured D/H is nine times less than the local interstellar value, and the lowest D/H observed in the Galaxy. We conclude that the observed Galactic Centre deuterium is cosmological, with an abundance reduced by stellar processing and mixing, and that there is no significant Galactic source of deuterium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. The aim of this paper is to discuss the nature of two type Ic supernovae SN 2007bg and SN 2007bi and their host galaxies. Both supernovae were discovered in wide-field, non-targeted surveys and are found to be associated with sub-luminous blue dwarf galaxies identified in SDSS images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. Massive stars in low-metallicity environments may produce exotic explosions such as long-duration gamma-ray bursts and pair-instability supernovae when they die as core-collapse supernovae (CCSNe). Such events are predicted to be relatively common in the early Universe during the first episodes of star-formation. To understand these distant explosions it is vital to study nearby CCSNe arising in low-metallicity environments to determine if the explosions have different characteristics to those studied locally in high-metallicity galaxies. Many of the nearby supernova searches concentrate their efforts on high star-formation rate galaxies, hence biasing the discoveries to metal rich regimes. Here we determine the feasibility of searching for these CCSNe in metal-poor dwarf galaxies using various survey strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a power-law dependence of mass loss on metal content,. M. Z(m), and adopting a theoretical relation between the terminal flow velocity and metal content, v(infinity). Z(0.13) (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 +/- 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 105.2 L circle dot. Within the errors, this result is in agreement with the prediction m = 0.69 +/- 0.10 by Vink et al. (2001, A& A, 369, 574). Absolute empirical values for the mass loss, based on Ha and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Ha and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Ha) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L similar to 10(4.75) L circle dot, the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present deep, narrow-hand photometry of the Local Group starburst galaxy IC10. Our dedicated photometric system provides detection of 13 new Wolf-Rayet (WR) stars and allows spectral subtypes to be assigned. Three of these new stars appear to be WC9 subtypes. If confirmed, these would be the very first WC9 stars ever detected in a low metallicity environment, hence putting strong new constraints on the formation and evolution models of massive stars. Eight of the new WR stars are of the WC subtype, which does not significantly modify the anomalously high WC/WN ratio in IC10. However it is likely that a number of Wolf-Rayet stars of the WNE and WC spectral subtypes are still to be discovered in the heart of the galaxy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present optical spectra of pre-main-sequence (PMS) candidates around the Ha region taken with the Southern African Large Telescope in the low metallicity (Z) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of Z similar to 1/5 Z(circle dot). It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, (M) over dot(acc), are a function of Z. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-Z star-forming region. Our data set was enlarged with literature data of H alpha emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 and 2 M-circle dot and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of Two Micron All Sky Survey and Spitzer infrared photometry. We find (M) over dot(acc) in the 1-2 M-circle dot interval to depend quasi-quadratically on stellarmass, with (M) over dot(acc) proportional to M-*(2.4 +/- 0.35), and inversely with stellar age, with (M) over dot(acc) proportional to t(*)(-0.7 +/- 0.4). Furthermore, we compare our spectroscopic (M) over dot(acc) measurements with solar Z Galactic PMS stars in the same mass range, but, surprisingly find no evidence for a systematic change in (M) over dot(acc) with Z. We show that literature accretion-rate studies are influenced by detection limits, and we suggest that (M) over dot(acc) may be controlled by factors other than Z(*), M-*, and age.