982 resultados para METAL-ELECTRODES
Resumo:
The effect of extended cycling on lithium metal electrodes has been investigated in an ionic liquid electrolyte. Cycling studies were conducted on lithium metal electrodes in a symmetrical Li|electrolyte|Li coin cell configuration for 5000 charge–discharge cycles at a current density of 0.1 mA cm− 2. The voltage–time plots show evidence of some unstable behavior which is attributed to surface reorganization. No evidence for lithium dendrite induced short circuiting was observed. SEM imaging showed morphology changes had occurred but no evidence of needle-like dendrite based growth was found after 5000 charge–discharge cycles. This study suggests that ionic liquid electrolytes can enable next generation battery technologies such as rechargeable lithium-air, in which a safe, reversible lithium electrode is a crucial component.
Resumo:
Molecular wires of charge transfer molecules were formed by co-evaporating the 7 7 8 8-Tetracyanoquinodimethane [TCNQ] (acceptor) and Tetrathiafulvalene [TTF] (donor) molecules across prefabricated metal electrodes. Molecular wires of TTF TCNQ were also formed by evaporating single complex of TTF:TCNQ across prefabricated metal electrodes The prefabricated metal electrodes were made using electron beam lithography on SiO2 and glass cover slip substrates. Even though TTF: TCNQ wires grown from both co-evaporation and evaporation techniques show semiconductor like behavior in temperature dependence of resistance they show different activation energies due the difference in stoichiometry of TTF and TCNQ.
Resumo:
The difference in the electrochemical behavior of hydroquinone and pyrocatechol. at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and. electron transfer of redox species.
Resumo:
Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.
Resumo:
Simultaneous neural recordings taken from multiple areas of the rodent brain are garnering growing interest due to the insight they can provide about spatially distributed neural circuitry. The promise of such recordings has inspired great progress in methods for surgically implanting large numbers of metal electrodes into intact rodent brains. However, methods for localizing the precise location of these electrodes have remained severely lacking. Traditional histological techniques that require slicing and staining of physical brain tissue are cumbersome, and become increasingly impractical as the number of implanted electrodes increases. Here we solve these problems by describing a method that registers 3-D computerized tomography (CT) images of intact rat brains implanted with metal electrode bundles to a Magnetic Resonance Imaging Histology (MRH) Atlas. Our method allows accurate visualization of each electrode bundle's trajectory and location without removing the electrodes from the brain or surgically implanting external markers. In addition, unlike physical brain slices, once the 3D images of the electrode bundles and the MRH atlas are registered, it is possible to verify electrode placements from many angles by "re-slicing" the images along different planes of view. Further, our method can be fully automated and easily scaled to applications with large numbers of specimens. Our digital imaging approach to efficiently localizing metal electrodes offers a substantial addition to currently available methods, which, in turn, may help accelerate the rate at which insights are gleaned from rodent network neuroscience.
Resumo:
© 2015 Silveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Resumo:
The electrochemical reduction of TCNQ to TCNQ•- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to −0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.
Resumo:
In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-andn nano-electro-mechanical systems (MEMS and NEMS) for biomedical,maerospace and oceanic applications.
Resumo:
We describe the fabrication of self-aligned split gate electrodes on suspended multiwalled carbon nanotube structures. A suspended multiwalled carbon nanotube structure was used as an evaporation mask for the deposition of metal electrodes resulting in the formation of discontinuous wire deposition. The metal deposits on the nanotubes are removed with lift-off due to the poor adhesion of metal to the nanotube surface. Using Al sacrificial layers, it was possible to fabricate self-aligned contact electrodes and control electrodes nanometers from the suspended carbon nanotubes with a single lithography step. It was also shown that the fabrication technique may also be used to form nano-gaped contact electrodes. The technique should prove useful for the fabrication of nano-electromechanical systems.
Resumo:
We describe the fabrication of self-aligned split gate electrodes on suspended multiwalled carbon nanotube structures. A suspended multiwalled carbon nanotube structure was used as an evaporation mask for the deposition of metal electrodes resulting in the formation of discontinuous wire deposition. The metal deposits on the nanotubes are removed with lift-off due to the poor adhesion of metal to the nanotube surface. Using Al sacrificial layers, it was possible to fabricate self-aligned contact electrodes and control electrodes nanometers from the suspended carbon nanotubes with a single lithography step. It was also shown that the fabrication technique may also be used to form nano-gaped contact electrodes. The technique should prove useful for the fabrication of nano-electromechanical systems. © 2003 Materials Research Society.
Resumo:
Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng-1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng-1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed. © 2011 Elsevier B.V. All rights reserved.
Resumo:
The glassy carbon electrode (gce) and highly oriented pyrolytic graphite (hopg) were electrochemically anodized at a potential of +2.0 V (vs. Ag/AgCl) to create active sites and to improve the adsorption of glucose oxidase (GOD) and flavin adenine dinucle
Resumo:
In this work, the surface-enhanced Raman scattering (SERS) spectra of pyridine (py) on thin films of Co and Ni electrodeposited on an Ag electrode activated by oxidation-reduction cycles (ORC) are presented. The SERS spectra from the thin films were compared to those of py on activated bare transition metal electrodes. It was verified that the SERS spectra of py on 3 monolayers (ML)-thick films of Ni and Co presented only bands assignable to the py adsorbed on transition metal surfaces. It was also observed that even for 50 ML-thick transition metal films, the py SERS intensity was ca. 40% of the intensity from the 3 ML-thick films. The relative intensities of the SERS bands depended on the thickness of the films, and for films thicker than 7 ML for Co and 9 ML for Ni they were very similar to those of the bare transition metal electrodes. The transition metal thin films over Ag activated electrodes presented SERS intensities 3 orders of magnitude higher than the ones from bare transition metal electrodes. These films are more suitable to study the adsorption of low Raman cross-section molecules than are ORC-activated transition metal electrodes.