999 resultados para METAL IMPURITIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic properties and interactions between transition metal (TM) impurities and clusters in low-dimensional metallic hosts are studied using a first principles theoretical method. In the first part of this work, the effect of magnetic order in 3d-5d systems is addressed from the perspective of its influence on the enhancement of the magnetic anisotropy energy (MAE). In the second part, the possibility of using external electric fields (EFs) to control the magnetic properties and interactions between nanoparticles deposited at noble metal surfaces is investigated. The influence of 3d composition and magnetic order on the spin polarization of the substrate and its consequences on the MAE are analyzed for the case of 3d impurities in one- and two-dimensional polarizable hosts. It is shown that the MAE and easy- axis of monoatomic free standing 3d-Pt wires is mainly determined by the atomic spin-orbit (SO) coupling contributions. The competition between ferromagnetic (FM) and antiferromagnetic (AF) order in FePtn wires is studied in detail for n=1-4 as a function of the relative position between Fe atoms. Our results show an oscillatory behavior of the magnetic polarization of Pt atoms as a function of their distance from the magnetic impurities, which can be correlated to a long-ranged magnetic coupling of the Fe atoms. Exceptionally large variations of the induced spin and orbital moments at the Pt atoms are found as a function of concentration and magnetic order. Along with a violation of the third Hund’s rule at the Fe sites, these variations result in a non trivial behavior of the MAE. In the case of TM impurities and dimers at the Cu(111), the effects of surface charging and applied EFs on the magnetic properties and substrate-mediated magnetic interactions have been investigated. The modifications of the surface electronic structure, impurity local moments and magnetic exchange coupling as a result of the EF-induced metallic screening and charge rearrangements are analysed. In a first study, the properties of surface substitutional Co and Fe impurities are investigated as a function of the external charge per surface atom q. At large inter-impurity distances the effective magnetic exchange coupling ∆E between impurities shows RKKY-like oscillations as a function of the distance which are not significantly affected by the considered values of q. For distances r < 10 Å, important modifications in the magnitude of ∆E, involving changes from FM to AF coupling, are found depending non-monotonously on the value and polarity of q. The interaction energies are analysed from a local perspective. In a second study, the interplay between external EF effects, internal magnetic order and substrate-mediated magnetic coupling has been investigated for Mn dimers on Cu(111). Our calculations show that EF (∼ 1eV/Å) can induce a switching from AF to FM ground-state magnetic order within single Mn dimers. The relative coupling between a pair of dimers also shows RKKY-like oscillations as a function of the inter-dimer distance. Their effective magnetic exchange interaction is found to depend significantly on the magnetic order within the Mn dimers and on their relative orientation on the surface. The dependence of the substrate-mediated interaction on the magnetic state of the dimers is qualitatively explained in terms of the differences in the scattering of surface electrons. At short inter-dimer distances, the ground-state configuration is determined by an interplay between exchange interactions and EF effects. These results demonstrate that external surface charging and applied EFs offer remarkable possibilities of manipulating the sign and strength of the magnetic coupling of surface supported nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out a first principles investigation on the electronic properties and chemical trends of 3d transition metal related impurities in diamond. In terms of formation energy, the interstitial site is considerably more unfavorable than the substitutional or divacancy ones. Going from Ti to Ni, the 3d-related energy levels in the gap become deeper toward the valence band in all three sites. However, in the divacancy one, those levels cross with the divacancy-related ones, such that the electronic property of the center depends on the character of the highest occupied level. (C) 2009 Elsevier B.A. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We frequently require sensitive bioassay techniques with which to study the effects of marine contaminants at environmentally realistic concentrations. Unfortunately, it is difficult to achieve sensitivity and precision in an organism amenable to indefinite periods of laboratory culture. Results from different laboratories are often extremely variable: LC50 values for the same substance, using the same organism, may differ by two or even three orders of magnitude (Wilson, Cowell & Beynon, 1975). Moreover, some of the most sensitive bioassay organisms require nutrient media, which may alter the availability and toxicity of metals by complexing them (Jones, 1964; Kamp-Nielsen, 1971; Hannan & Patouillet, 1972) and often contain metal impurities at significant levels (Albert, 1968; Steeman Nielsen & Wium Anderson, 1970). The object of the work reported here has been to develop a technique by which these problems might be minimized or avoided. Hydroids were chosen as bioassay organisms for a variety of reasons. They are tolerant but sensitive to small variations in their chemical environment. Techniques for growing hydroids are simple and they can be cultured under conditions of near optimal temperature, salinity and food supply, thus minimizing the errors frequent in bioassay work arising from variations in the history of the test organisms, their size, sex or physiological state. An important source of variability in all work with organisms is that inherent in the genetic material, but with hydroids this can be avoided by the use of a single clone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The extraction of metal impurities during phosphorus diffusion gettering (PDG) is one of the crucial process steps when fabricating high-efficiency solar cells using low-cost, lower-purity silicon wafers. In this work, we show that for a given metal concentration, the size and density of metal silicide precipitates strongly influences the gettering efficacy. Different precipitate size distributions can be already found in silicon wafers grown by different techniques. In our experiment, however, the as-grown distribution of precipitated metals in multicrystalline Si sister wafers is engineered through different annealing treatments in order to control for the concentration and distribution of other defects. A high density of small precipitates is formed during a homogenization step, and a lower density of larger precipitates is formed during extended annealing at 740º C. After PDG, homogenized samples show a decreased interstitial iron concentration compared to as-grown and ripened samples, in agreement with simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Near-infrared spectroscopy is a somewhat unutilised technique for the study of minerals. The technique has the ability to determine water content, hydroxyl groups and transition metals. In this paper we show the application of NIR spectroscopy to the study of selected minerals. The structure and spectral properties of two Cu-tellurite minerals graemite and teineite are compared with bismuth containing tellurite mineral smirnite by the application of NIR and IR spectroscopy. The position of Cu2+ bands and their splitting in the electronic spectra of tellurites are in conformity with octahedral geometry distortion. The spectral pattern of smirnite resembles graemite and the observed band at 10855 cm-1 with a weak shoulder at 7920 cm-1 is identified as due to Cu2+ ion. Any transition metal impurities may be identified by their bands in this spectral region. Three prominent bands observed in the region of 7200-6500 cm-1 are the overtones of water whilst the weak bands observed near 6200 cm-1in tellurites may be attributed to the hydrogen bonding between (TeO3)2- and H2O. The observation of a number of bands centred at around 7200 cm-1 confirms molecular water in tellurite minerals. A number of overlapping bands in the low wavenumbers 4500-4000 cm-1 is the result of combinational modes of (TeO3)2−ion. The appearance of the most intense peak at 5200 cm-1 with a pair of weak bands near 6000 cm-1 is a common feature in all the spectra and is related to the combinations of OH vibrations of water molecules, and bending vibrations ν2 (δ H2O). Bending vibrations δ H2O observed in the IR spectra shows a single band for smirnite at 1610 cm-1. The resolution of this band into number of components is evidenced for non-equivalent types of molecular water in graemite and teineite. (TeO3)2- stretching vibrations are characterized by three main absorptions at 1080, 780 and 695 cm-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A possible mechanism for the resistance minimum in dilute alloys in which the localized impurity states are non-magnetic is suggested. The fact is considered that what is essential to the Kondo-like behaviour is the interaction of the conduction electron spin s with the internal dynamical degrees of freedom of the impurity centre. The necessary internal dynamical degrees of freedom are provided by the dynamical Jahn-Teller effect associated with the degenerate 3d-orbitals of the transition-metal impurities interacting with the surrounding (octahedral) complex of the nearest-neighbour atoms. The fictitious spin I characterizing certain low-lying vibronic states of the system is shown to couple with the conduction electron spin s via s-d mixing and spin-orbit coupling, giving rise to a singular temperature-dependent exchange-like interaction. The resistivity so calculated is in fair agreement with the experimental results of Cape and Hake for Ti containing 0.2 at% of Fe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well-known that the properties of semiconductor materials including gallium arsenide are controlled by defects and impurities. The characterization of these defects is important not only for better understanding of the solid state phenomena but also for improved reliability and performance of electronic devices. We have been investigating the defects in gallium arsenide for several years using deep level transient spectroscopy, photoconductivity, transient photoconductivity, photoluminescence etc. Results drawn from our recent studies are presented here to illustrate some of the problems concerning transition metal impurities, process-induced defects, occurrence of intracentre transitions and metastability of deep levels in gallium arsenide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the details of a formalism for calculating spatially varying zero-frequency response functions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals. The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the Wilson renormalization group. We illustrate the formalism for the spin-1/2 Kondo problem and present results for the conduction-spin-density�impurity-spin correlation function and conduction-electron charge density near the impurity. We also discuss qualitative features that emerge from our calculations and discuss how they can be carried over to the case of realistic models for transition-metal impurities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

综述了过渡金属杂质(Cu,Fe)和稀土杂质(Dy,Pr,Sm,Ce)对掺钕磷酸盐激光玻璃吸收损耗及Nd^3+荧光猝灭影响的研究状况。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The semiconductor alloy indium gallium nitride (InxGa1-xN) offers substantial potential in the development of high-efficiency multi-junction photovoltaic devices due to its wide range of direct band gaps, strong absorption and other optoelectronic properties. This work uses a variety of characterization techniques to examine the properties of InxGa1-xN thin films deposited in a range of compositions by a novel plasma-enhanced evaporation deposition system. Due to the high vapour pressure and low dissociation temperature of indium, the indium incorporation and, ultimately, control of the InxGa1-xN composition was found to be influenced to a greater degree by deposition temperature than variations in the In:Ga source rates in the investigated region of deposition condition space. Under specific deposition conditions, crystalline films were grown in an advantageous nano-columnar microstructure with deposition temperature influencing column size and density. The InxGa1-xN films were determined to have very strong absorption coefficients with band gaps indirectly related to indium content. However, the films also suffer from compositional inhomogeneity and In-related defect complexes with strong phonon coupling that dominates the emission mechanism. This, in addition to the presence of metal impurities, harms the alloy’s electronic properties as no significant photoresponse was observed. This research has demonstrated the material properties that make the InxGa1-xN alloy attractive for multi-junction solar cells and the benefits/drawbacks of the plasma-enhanced evaporation deposition system. Future work is needed to overcome significant challenges relating to crystalline quality, compositional homogeneity and the optoelectronic properties of In-rich InxGa1-xN films in order to develop high-performance photovoltaic devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous avons observé une augmentation ‘’transient’’du taux de cristallisation interfacique de l’a-Si lorsqu’on réimplante du Si à proximité de l’interface amorphe/cristal. Après amorphisation et traitement thermique à 650°C pendant 5s de la couche a-Si crée par implantation ionique, une partie a été réimplantée. Les défauts produits par auto-réimplantation à 0.7MeV se trouvent à (302±9) nm de l’interface initiale. Cela nous a permis d’étudier d’avantage la variation initiale de la vitesse SPE (Épitaxie en phase solide). Avec des recuit identiques de 4h à 500°C, nous avons déterminé les positions successives des interfaces et en déduit les taux de cristallisation SPE. La cristallisation débute à l’interface et continue graduellement vers la surface. Après le premier recuit, (252±11) nm s’est recristallisé dans la zone réimplantée soit un avancement SPE de 1.26x10^18at./cm2. Cette valeur est environ 1.50 fois plus importante que celle dans l’état relaxé. Nous suggérons que la présence de défauts à proximité de l’interface a stimulé la vitesse initiale. Avec le nombre de recuit, l’écart entre les vitesses diminue, les deux régions se cristallisent presque à la même vitesse. Les mesures Raman prises avant le SPE et après chaque recuit ont permis de quantifier l’état de relaxation de l’a-Si et le transfert de l’état dé-relaxé à relaxé.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.