833 resultados para METABOLIC-ACIDOSIS
Resumo:
Objective: To describe the composition of metabolic acidosis in patients with severe sepsis and septic shock at intensive care unit admission and throughout the first 5 days of intensive care unit stay. Design: Prospective, observational study. Setting: Twelve-bed intensive care unit. Patients: Sixty patients with either severe sepsis or septic shock. Interventions: None. Measurements and Main Results: Data were collected until 5 days after intensive care unit admission. We studied the contribution of inorganic ion difference, lactate, albumin, phosphate, and strong ion gap to metabolic acidosis. At admission, standard base excess was -6.69 +/- 4.19 mEq/L in survivors vs. -11.63 +/- 4.87 mEq/L in nonsurvivors (p < .05); inorganic ion difference (mainly resulting from hyperchloremia) was responsible for a decrease in standard base excess by 5.64 +/- 4.96 mEq/L in survivors vs. 8.94 +/- 7.06 mEq/L in nonsurvivors (p < .05); strong ion gap was responsible for a decrease in standard base excess by 4.07 +/- 3.57 mEq/L in survivors vs. 4.92 +/- 5.55 mEq/L in nonsurvivors with a nonsignificant probability value; and lactate was responsible for a decrease in standard base excess to 1.34 +/- 2.07 mEq/L in survivors vs. 1.61 +/- 2.25 mEq/L in nonsurvivors with a nonsignificant probability value. Albumin had an important alkalinizing effect in both groups; phosphate had a minimal acid-base effect. Acidosis in survivors was corrected during the study period as a result of a decrease in lactate and strong ion gap levels, whereas nonsurvivors did not correct their metabolic acidosis. In addition to Acute Physiology and Chronic Health Evaluation 11 score and serum creatinine level, inorganic ion difference acidosis magnitude at intensive care unit admission was independently associated with a worse outcome. Conclusions: Patients with severe sepsis and septic shock exhibit a complex metabolic acidosis at intensive care unit admission, caused predominantly by hyperchloremic acidosis, which was more pronounced in nonsurvivors. Acidosis resolution in survivors was attributable to a decrease in strong ion gap and lactate levels. (Crit Care Med 2009; 37:2733-2739)
Resumo:
Objective To report the severe metabolic acidosis identified in a group of 11 healthy mules anaesthetized with halothane for castration.Study design Data generated from a prospective study.Animals Eleven mules aged 2.5-8 years, weighing 230-315 kg and 11 horses aged 1.5-3.5 years, weighing 315-480 kg.Methods Animals were anaesthetized for castration as part of an electroencephalographic study. Preanaesthetic medication was acepromazine (0.03 mg kg(-1)) administered through a preplaced jugular venous catheter. Anaesthesia was induced 30-90 minutes later with intravenous thiopental (10 mg kg(-1)). After orotracheal intubation, anaesthesia was maintained with halothane vaporised in oxygen. The animals' lungs were ventilated to maintain the end-tidal CO(2) concentration between 3.9 and 4.5 kPa (29-34 mmHg). Anaesthetic monitoring included invasive blood pressure measurement via the auricular artery (mules) and submandibular branch of the facial artery (horses). Arterial blood gas samples were drawn from these catheters at three time points during surgery and pH, PaCO(2), base excess (ecf) and HCO(3)(-) were measured. Values were compared between groups using a Mann-Whitney test. p was taken as <0.05. Results are reported as median (range).Results PaCO(2) did not differ between groups but pH was significantly lower in mules [7.178 (7.00-7.29)] compared to horses [7.367 (7.24-7.43)] (p = 0.0002). HCO(3)(-) values were significantly lower in the mules [16.6 (13.0-22.3) mM] compared to horses [23.7 (20.9-23.7) mM] (p = 0.0001), whilst base excess (ecf) was significantly more negative in the mules [-11.4 (-1.27 to -16) mM] compared to horses [-1.3 (-5.8 to +2.4) mM] (p = 0.0004).Conclusion and clinical relevance This study demonstrated severe metabolic acidosis in healthy mules, which may have prompted intervention with drug therapies in a clinical arena. It is probable that the acidosis existed prior to anaesthesia and caused by diet, but other possible causes are considered.
Resumo:
Objective The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Experimental Design Eighteen male calves 830 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Results Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Conclusion Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration.
Resumo:
We describe the case of a 28-year-old otherwise healthy woman who presents to our emergency department with nausea for 2 days and severe vomiting for 1 day. She has no history of travel, and her medical history is unremarkable. The physical examination shows a soft and nontender abdomen. Laboratory examinations reveal the presence of significant metabolic alkalosis despite the severe vomiting of the patient. Hypochloremic alkalosis would be expected to be present in this patient. We explain how to correctly identify the rare cause of metabolic acidosis present in this patient using the physicochemical approach (Stewarts approach) for the analysis of human acid-base disorders.
Resumo:
The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.
Resumo:
Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial Pco2 gradient, DeltaPco2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial Pco2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63 +/- 2 [mean +/- SEM]; Acute Physiology and Chronic Health Evaluation II score, 20 +/- 1; Sequential Organ Failure Assessment score, 8 +/- 0). pHi, and the effects of bicarbonate and arterial and mucosal Pco2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27 +/- 0.01) due to low arterial bicarbonate and increased DeltaPco2. Low pHi (<7.32) at admission (n = 58; mortality, 29% vs. 13% in those with pHi >/=7.32 at admission; P = 0.061) was associated with an increased DeltaPco2 in 59% of patients (mortality, 47% vs. 4% for patients with low pHi and normal DeltaPco2; P = 0.0003). An increased versus normal DeltaPco2, regardless of pHi, was associated with increased mortality at admission (51% vs. 5%; P < 0.0001; n = 39) and at 6 h (34% vs. 13%; P = 0.016; n = 45). A delayed normalization or persistently low pHi (n = 47) or high DeltaPco2 (n = 25) was associated with high mortality (low pHi [34%] vs. high DeltaPco2 [60%]; P = 0.046). In nonsurvivors, hypocapnia increased pHi at baseline, 6, and 24 h (all P = 0.001). In patients with initially normal pHi or DeltaPco2, outcome was not related to subsequent changes in pHi or DeltaPco2. Increased DeltaPco2 during early resuscitation suggests poor tissue perfusion and is associated with high mortality. Arterial bicarbonate contributes more to pHi than the DeltaPco2 but is not associated with mortality. Hyperventilation partly masks mucosal acidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome.
Resumo:
Investigation of 31 of Roma patients with congenital lactic acidosis (CLA) from Bulgaria identified homozygosity for the R446* mutation in the PDHX gene as the most common cause of the disorder in this ethnic group. It accounted for around 60% of patients in the study and over 25% of all CLA cases referred to the National Genetic Laboratory in Bulgaria. The detection of a homozygous patient from Hungary and carriers among population controls from Romania and Slovakia suggests a wide spread of the mutation in the European Roma population. The clinical phenotype of the twenty R446* homozygotes was relatively homogeneous, with lactic acidosis crisis in the first days or months of life as the most common initial presentation (15/20 patients) and delayed psychomotor development and/or seizures in infancy as the leading manifestations in a smaller group (5/20 patients). The subsequent clinical picture was dominated by impaired physical growth and a very consistent pattern of static cerebral palsy-like encephalopathy with spasticity and severe to profound mental retardation seen in over 80% of cases. Most patients had a positive family history. We propose testing for the R446* mutation in PDHX as a rapid first screening in Roma infants with metabolic acidosis. It will facilitate and accelerate diagnosis in a large proportion of cases, allow early rehabilitation to alleviate the chronic clinical course, and prevent further affected births in high-risk families.
Resumo:
La acidosis metabólica es un trastorno que se presenta frecuentemente en los pacientes de la Unidad de Cuidado Intensivo y la determinación de su causa puede llegar a ser compleja. La etiología tóxica en ocasiones es inadvertida dentro de los diagnósticos diferenciales, razón por la cual esta revisión expone las principales causas de acidosis metabólica en un paciente intoxicado. Este diagnóstico no es fácil cuando se desconoce la historia completa del paciente, en este caso, el hallazgo de acidosis con otros signos y alteraciones bioquímicas, pueden ser herramientas que ayuden a sospechar la toxicidad de algunas sustancias. La acidosis metabólica se puede presentar con anión gap normal, bajo o alto, éstas últimas suelen estar relacionadas con intoxicaciones más graves y a su vez, la severidad de la acidosis puede ser un factor predictor de severidad y de mortalidad.
Resumo:
En este artículo se presenta para discusión el caso de una paciente de 59 años con pérdida súbita de conciencia. La tomografía axial computa- rizada reveló una hemorragia intraparenquimatosa; en el postoperatorio de la cirugía de drenajedel hematoma presentó marcada acidemia metabólica sin causa aparente.
Resumo:
Paciente de sexo femenino, de 59 años, educadora; llevada a institución hospitalaria por alteración súbita del estado de conciencia. Antecedente de hipotiroidismo en manejo con levotiroxina, 50 microgramos al día. Al examen físico de ingreso se encontraba en mal estado general, FC: 88 x min., TA 170/110, FR: 8 x min., temp.: 35 Cº, Glasgow: 6/15; estuporosa, con apertura ocular al estímulo doloroso, sin respuesta verbal, movimiento de retirada en hemicuerpo izquierdo al estímulo doloroso. Plejia de miembro superior derecho, paresia 2/5 en miembro inferior derecho y Babinski bilateral. Las imágenes diagnósticas confirmaron evento cerebrovascular tipo hemorragia intraparenquimatosa, de extensión parietotemporal e insular del hemisferio cerebral izquierdo. Se le realizó cirugía de drenaje de hematoma intraparenquimatoso e intraventricular, sin complicaciones. En el primer día postoperatorio la paciente cursó con hipokalemia, que persistió a pesar de reposición de potasio y presentó acidemia metabólica sin causa aparente que empeoró a pesar de manejo médico.
Resumo:
Background. We sought to establish an anesthetic protocol to evaluate the hemodynamic, metabolic, and electrolytic changes after graft reperfusion in pigs undergoing orthotopic intestinal transplant (ITX).Methods. Fifteen pigs were distributed into two groups: GI (n = 6), without immunosuppression, and GII (n = 9), immunosuppressed before surgery with tacrolimus (0.3 mg/kg). The animals were premedicated at 1 hour before surgery with IM acepromazine (0.1 mg/kg), morphine (0.4 mg/kg), ketamine (10 mg/kg), and atropine (0.044 mg/kg IM). Anesthesia induction used equal proportions of diazepam and ketamine (0.1-0.15 mL/kg/IV) and for maintenance in IV infusion of xylazine (1 mg/mL), ketamine (2 mg/mL), and guaiacol glyceryl ether 5% (50 mg/mL), diluted in 250 mL of 5% glucose solution. In addition, recipient pigs were treated with isofluorane inhalation. Heart rate (HR), systolic (SAP), mean (MAP), and diastolic (DAP) arterial pressure, pulse oximetry, respiratory frequency (f), capnography, body temperature (T), blood gas analysis (pH, PaCO(2), PaO(2), base excess, BE; HCO(3)(-), SatO(2)), serum potassium (K), calcium (Ca), sodium, hematocrit (Hct), and glucose (Glu) were measured at four times; MO: after incision (basal value); M1: 10 minutes before reperfusion; and M2 and M3: 10 and 20 minutes after graft reperfusion.Results. All groups behaved in a similar pattern. There was significant hypotension after graft reperfusion in GI and GII (M2 = 56.2 +/- 6.4 and M3 = 57.2 +/- 8.3 mm Hg and M2 = 65.7 +/- 10.2 and M3 = 67.8 +/- 16.8 mm Hg, respectively), accompanied by elevated HR. The ETCO(2) was elevated at M2 (42 mm Hg) and M3 (40 mm Hg). Metabolic acidosis was observed after reperfusion, with significant increase in K levels.Conclusion. The anesthetic protocol for donors and recipients was safe to perform the procedure, allowing control of hemodynamic and metabolic changes after reperfusion without differences regarding immunosuppression.
Resumo:
BACKGROUND Lactic acidosis (LAc) is a common form of metabolic acidosis early after heart transplantation (HTX). The mechanism remains unclear. This study analyzed 13 patients who developed severe LAc after HTX. METHODS From a series of 60 consecutive heart transplant patients, we identified 13 patients with LAc in the first hours following HTX. Nine patients with normal or mildly elevated lactate levels (<5.0 mmol/l) were investigated as controls. RESULTS Thirteen patients developed a moderate or severe LAc (up to 14.6 mmol/l) after HTX. Serum lactate levels increased immediately following surgery with a peak after 6.3+/-1.4 h, spontaneously returning to normal values within 24 h. In contrast to the control group, a significant correlation was found between the maximal serum lactate level and the maximal dosage of inotropic drugs (r=0.93, P<0.02), administered during the reperfusion phase and continued for 12-24 h postoperatively. No correlation was found between LAc and blood gas analysis during extracorporeal perfusion period. CONCLUSION LAc can occur after HTX and seems to be related to the inotropic support of the graft. In contrast to other forms, LAc after HTX has an excellent prognosis and resolves rapidly and spontaneously without treatment. The fact that inotropic support during and immediately after cardiac transplantation can enhance preexisting severe peripheral metabolic cellular dysfunction remains hypothetical.
Resumo:
Primary distal renal tubular acidosis (dRTA) is characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Kindreds showing either autosomal dominant or recessive transmission are described. Mutations in the chloride-bicarbonate exchanger AE1 have recently been reported in four autosomal dominant dRTA kindreds, three of these altering codon Arg589. We have screened 26 kindreds with primary dRTA for mutations in AE1. Inheritance was autosomal recessive in seventeen kindreds, autosomal dominant in one, and uncertain due to unknown parental phenotype or sporadic disease in eight kindreds. No mutations in AE1 were detected in any of the autosomal recessive kindreds, and analysis of linkage showed no evidence of linkage of recessive dRTA to AE1. In contrast, heterozygous mutations in AE1 were identified in the one known dominant dRTA kindred, in one sporadic case, and one kindred with two affected brothers. In the dominant kindred, the mutation Arg-589/Ser cosegregated with dRTA in the extended pedigree. An Arg-589/His mutation in the sporadic case proved to be a de novo mutation. In the third kindred, affected brothers both have an intragenic 13-bp duplication resulting in deletion of the last 11 amino acids of AE1. These mutations were not detected in 80 alleles from unrelated normal individuals. These findings underscore the key role of Arg-589 and the C terminus in normal AE1 function, and indicate that while mutations in AE1 cause autosomal dominant dRTA, defects in this gene are not responsible for recessive disease.
Resumo:
Pela sua alta incidência, morbidade, mortalidade e custos ao sistema de saúde, a sepse se destaca entre as diversas indicações de internação em unidade de terapia intensiva (UTI). A disfunção da microcirculação tem papel central na gênese e manutenção da síndrome séptica, sendo um marco fisiopatológico desta síndrome. Pacientes críticos invariavelmente estão ansiosos, agitados, confusos, desconfortáveis e/ou com dor. Neste contexto, drogas sedativas são amplamente utilizadas na medicina intensiva. A dexmedetomidina, um agonista potente e altamente seletivo dos receptores alfa-2 adrenérgicos, vem conquistando espaço como o sedativo de escolha nas UTIs por seus efeitos de sedação consciente, redução da duração e incidência de delirium e preservação da ventilação espontânea. Apesar destas possíveis vantagens, a indicação de uso da dexmedetomidina na síndrome séptica ainda carece de conhecimentos sobre seus efeitos na microcirculação e perfusão orgânica. Com o intuito de caracterizar os efeitos microcirculatórios da dexmedetomidina em um modelo murino de endotoxemia que permite estudos in vivo da inflamação e disfunção da perfusão microvascular, hamsters Sírios dourados submetidos à endotoxemia induzida por administração intravenosa de lipopolissacarídeo de Escherichia coli (LPS, 1,0 mg.kg-1) foram sedados com dexmedetomidina (5,0 μg.kg.h-1). A microscopia intravital da preparação experimental (câmara dorsal) permitiu a realização de uma análise quantitativa das variáveis microvasculares e do rolamento e adesão de leucócitos à parede venular. Também foram analisados os parâmetros macro-hemodinâmicos e gasométricos (arterial e venoso portal), as concentrações de lactato arterial e venoso portal, a água pulmonar total e a sobrevivência do animal. Animais não-endotoxêmicos e/ou tratados com solução salina a 0,9% serviram como controles neste experimento. O LPS aumentou o rolamento e a adesão de leucócitos à parede venular, diminuiu a densidade capilar funcional e a velocidade das hemácias nos capilares e induziu acidose metabólica. O tratamento com dexmedetomidina atenuou significativamente estas respostas patológicas (p < 0,05). A frequência de pulso dos animais foi significativamente reduzida pela droga (p < 0,05). Outros resultados não foram tão expressivos (estatisticamente ou clinicamente). Estes resultados indicam que a utilização de dexmedetomidina produz um efeito protetor sobre a microcirculação da câmara dorsal de hamsters endotoxêmicos. Efeitos anti-inflamatórios da dexmedetomidina sobre os leucócitos e o endotélio poderiam melhorar a perfusão capilar e representar o mecanismo in vivo de ação da droga na microcirculação.