2 resultados para MESOSUBSTITUTED CORROLES
Resumo:
Corrole and four of its isomers with subtle structural changes promoted by exchange of nitrogen and carbon atoms in the corrole ring have been studied by traveling wave ion mobility mass spectrometry and collision induced dissociation experiments. Significant differences in shapes and charge distributions for their protonated molecules were found to lead to contrasting gas phase mobilities, most particularly for corrorin, the most "confused" isomer. Accordingly, corrorin was predicted by B3LYP/6-31g(d,p) and collisional cross section calculations to display the most compact tri-dimensional structure, whereas NCC4 and corrole were found to be the most planar isomers. Better resolution between the corrole isomers was achieved using the more polarizable and massive CO2 as the drift gas. Sequential losses of HF molecules were found to dominate the dissociation chemistry of the protonated molecules of these corrole isomers, but their unique structures caused contrasting labilities towards CID, whereas NCC4 showed a peculiar and structurally diagnostic loss of NH3, allowing its prompt differentiation from the other isomers.
Resumo:
The interaction of the cationic meso-tetrakis 4-N-methylpyridyl porphyrin (TMPyP) with large unilamellar vesicles (LUVs) was investigated in the present study. LUVs were formed by mixtures of the zwitterionic 1,2-dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC) and anionic 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) phospholipids, at different DPPG molar percentages. All investigations were carried out above (50 degrees C) and below (25 degrees C) the main phase transition temperature of the LUVs (similar to 41 degrees C). The binding constant values, K-b, estimated from the time-resolved fluorescence study, showed a significant increase of the porphyrin affinity at higher mol% DPPG. This affinity is markedly increased when the LUVs are in the liquid crystalline state. For both situations, the increase of the K-b value was also followed by a higher porphyrin fraction bound to the LUVs. The displacement of the vesicle-bound porphyrins toward the aqueous medium, upon titration with the salt potassium chloride (KCl), was also studied. Altogether, our steady-state and frequency-domain fluorescence quenching data results indicate that the TMPyP is preferentially located at the LUVs Stern layer. This is supported by the zeta potential studies, where a partial neutralization of the LUVs surface charge, upon porphyrin titration, was observed. Dynamic light scattering (DLS) results showed that, for some phospholipid systems, this partial neutralization leads to the LUVs flocculation. (C) 2012 Elsevier Inc. All rights reserved.