915 resultados para MESH REFINEMENT
Resumo:
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.
Resumo:
The accurate solution of 3D full-wave Method of Moments (MoM) on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretizations may not be fine enough to capture rapid spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates large number of solution variables and therefore requires an unnecessarily large matrix solution. In this work, a suitable refinement criterion for MoM based electromagnetic package-board extraction is proposed and the advantages of the adaptive strategy are demonstrated from both accuracy and speed perspectives.
Resumo:
3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.
Resumo:
Damage evolution of heterogeneous brittle media involves a wide range of length scales. The coupling between these length scales underlies the mechanism of damage evolution and rupture. However, few of previous numerical algorithms consider the effects of the trans-scale coupling effectively. In this paper, an adaptive mesh refinement FEM algorithm is developed to simulate this trans-scale coupling. The adaptive serendipity element is implemented in this algorithm, and several special discontinuous base functions are created to avoid the incompatible displacement between the elements. Both the benchmark and a typical numerical example under quasi-static loading are given to justify the effectiveness of this model. The numerical results reproduce a series of characteristics of damage and rupture in heterogeneous brittle media.
Resumo:
Alternative meshes of the sphere and adaptive mesh refinement could be immensely beneficial for weather and climate forecasts, but it is not clear how mesh refinement should be achieved. A finite-volume model that solves the shallow-water equations on any mesh of the surface of the sphere is presented. The accuracy and cost effectiveness of four quasi-uniform meshes of the sphere are compared: a cubed sphere, reduced latitude–longitude, hexagonal–icosahedral, and triangular–icosahedral. On some standard shallow-water tests, the hexagonal–icosahedral mesh performs best and the reduced latitude–longitude mesh performs well only when the flow is aligned with the mesh. The inclusion of a refined mesh over a disc-shaped region is achieved using either gradual Delaunay, gradual Voronoi, or abrupt 2:1 block-structured refinement. These refined regions can actually degrade global accuracy, presumably because of changes in wave dispersion where the mesh is highly nonuniform. However, using gradual refinement to resolve a mountain in an otherwise coarse mesh can improve accuracy for the same cost. The model prognostic variables are height and momentum collocated at cell centers, and (to remove grid-scale oscillations of the A grid) the mass flux between cells is advanced from the old momentum using the momentum equation. Quadratic and upwind biased cubic differencing methods are used as explicit corrections to a fast implicit solution that uses linear differencing.
Resumo:
El principal objetivo de la presente tesis es el de desarrollar y probar un código capaz de resolver las ecuaciones de Maxwell en el dominio del tiempo con Malla Refinada Adaptativa (AMR por sus siglas en inglés). AMR es una técnica de cálculo basada en dividir el dominio físico del problema en distintas mallas rectangulares paralelas a las direcciones cartesianas. Cada una de las mallas tendrá distinta resolución y aquellas con mayor resolución se sitúan allí dónde las ondas electromagnéticas se propagan o interaccionan con los materiales, es decir, dónde mayor precisión es requerida. Como las ondas van desplazándose por todo el dominio, las mayas deberán seguirlas. El principal problema al utilizar esta metodología se puede encontrar en las fronteras internas, dónde las distintas mallas se unen. Ya que el método más corrientemente utilizado para resolver las ecuaciones de Maxwell es el de las diferencias finitas en el dominio del tiempo (FDTD por sus siglas en inglés) , el trabajo comenzó tratando de adaptar AMR a FDTD. Tras descubrirse que esta interacción resultaba en problemas de inestabilidades en las fronteras internas antes citadas, se decidió cambiar a un método basado en volúmenes finitos en el dominio del tiempo (FVTD por sus siglas en inglés). Este se basa en considerar la forma en ecuaciones de conservación de las ecuaciones de Maxwell y aplicar a su resolución un esquema de Godunov. Se ha probado que es clave para el correcto funcionamiento del código la elección de un limitador de flujo que proteja los extremos de la onda de la disipación típica de los métodos de este tipo. Otro problema clásico a la hora de resolver las ecuaciones de Maxwell es el de tratar con las condiciones de frontera física cuando se simulan dominios no acotados, es decir, dónde las ondas deben salir del sistema sin producir ninguna reflexión. Normalmente la solución es la de disponer una banda absorbente en las fronteras físicas. En AMREM se ha desarrollado un nuevo método basado en los campos característicos que con menor requisito de CPU funcina suficientemente bien incluso en los casos más desfaborables. El código ha sido contrastado con soluciones analíticas de diferentes problemas y también su velocidad ha sido comparada con la de Meep, uno de los programas más conocidos del ámbito. También algunas aplicaciones han sido simuladas con el fin de demostrar el amplio espectro de campos en los que AMREM puede funcionar como una útil herramienta.
Resumo:
This lecture course covers the theory of so-called duality-based a posteriori error estimation of DG finite element methods. In particular, we formulate consistent and adjoint consistent DG methods for the numerical approximation of both the compressible Euler and Navier-Stokes equations; in the latter case, the viscous terms are discretized based on employing an interior penalty method. By exploiting a duality argument, adjoint-based a posteriori error indicators will be established. Moreover, application of these computable bounds within automatic adaptive finite element algorithms will be developed. Here, a variety of isotropic and anisotropic adaptive strategies, as well as $hp$-mesh refinement will be investigated.
Resumo:
We propose an alternative crack propagation algo- rithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algo- rithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equa- tions is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algo- rithm, we use five quasi-brittle benchmarks, all successfully solved.
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.
Resumo:
This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodology. The fully three-dimensional, compressible, Reynolds-averaged Navier-Stokes equations with k-ε turbulence modeling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.
Resumo:
Cambridge Flow Solutions Ltd, Compass House, Vision Park, Cambridge, CB4 9AD, UK Real-world simulation challenges are getting bigger: virtual aero-engines with multistage blade rows coupled with their secondary air systems & with fully featured geometry; environmental flows at meta-scales over resolved cities; synthetic battlefields. It is clear that the future of simulation is scalable, end-to-end parallelism. To address these challenges we have reported in a sequence of papers a series of inherently parallel building blocks based on the integration of a Level Set based geometry kernel with an octree-based cut-Cartesian mesh generator, RANS flow solver, post-processing and geometry management & editing. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh driven by the underpinning Level Set and managed by mesh quality optimization algorithms; this permits third party flow solvers to be deployed. This paper continues this sequence by reporting & demonstrating two main novelties: variable depth volume mesh refinement enabling variable surface mesh refinement and a radical rework of the mesh generation into a bottom-up system based on Space Filling Curves. Also reported are the associated extensions to body-conformal mesh export. Everything is implemented in a scalable, parallel manner. As a practical demonstration, meshes of guaranteed quality are generated for a fully resolved, generic aircraft carrier geometry, a cooled disc brake assembly and a B747 in landing configuration. Copyright © 2009 by W.N.Dawes.
Resumo:
Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.
Resumo:
We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).