1000 resultados para MERISTEM DEVELOPMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CLAVATA1 (CLV1) gene encodes a putative receptor kinase required for the proper balance between cell proliferation and differentiation in Arabidopsis shoot and flower meristems. Impaired CLV1 signaling results in masses of undifferentiated cells at the shoot and floral meristems. Although many putative receptor kinases have been identified in plants, the mechanism of signal transduction mediated by plant receptor-like kinases is largely unknown. One potential effector of receptor kinase signaling is kinase-associated protein phosphatase (KAPP), a protein that binds to multiple plant receptor-like kinases in a phosphorylation-dependent manner. To examine a possible role for KAPP in CLV1-dependent plant development, the interaction of CLV1 and KAPP was investigated in vitro and in vivo. KAPP binds directly to autophosphorylated CLV1 in vitro and co-immunoprecipitates with CLV1 in plant extracts derived from meristematic tissue. Reduction of KAPP transcript accumulation in an intermediate clv1 mutant suppresses the mutant phenotype, and the degree of suppression is inversely correlated with KAPP mRNA levels. These data suggest that KAPP functions as a negative regulator of CLV1 signaling in plant development. This may represent a general model for the interaction of KAPP with receptor kinases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Roles for the transcription factor RFL in rice axillary meristem development were studied. Its regulatory effects on LAX1, CUC1, and OsPIN3 reveal its functions in axillary meristem specification and outgrowth.Axillary meristems (AMs) are secondary shoot meristems whose outgrowth determines plant architecture. In rice, AMs form tillers, and tillering mutants reveal an interplay between transcription factors and the phytohormones auxin and strigolactone as some factors that underpin this developmental process. Previous studies showed that knockdown of the transcription factor gene RFL reduced tillering and caused a very large decrease in panicle branching. Here, the relationship between RFL, AM initiation, and outgrowth was examined. We show that RFL promotes AM specification through its effects on LAX1 and CUC genes, as their expression was modulated on RFL knockdown, on induction of RFL:GR fusion protein, and by a repressive RFL-EAR fusion protein. Further, we report reduced expression of auxin transporter genes OsPIN1 and OsPIN3 in the culm of RFL knockdown transgenic plants. Additionally, subtle change in the spatial pattern of IR4 DR5:GFP auxin reporter was observed, which hints at compromised auxin transport on RFL knockdown. The relationship between RFL, strigolactone signalling, and bud outgrowth was studied by transcript analyses and by the tillering phenotype of transgenic plants knocked down for both RFL and D3. These data suggest indirect RFL-strigolactone links that may affect tillering. Further, we show expression modulation of the auxin transporter gene OsPIN3 upon RFL:GR protein induction and by the repressive RFL-EAR protein. These modified forms of RFL had only indirect effects on OsPIN1. Together, we have found that RFL regulates the LAX1 and CUC genes during AM specification, and positively influences the outgrowth of AMs though its effects on auxin transport.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The Arabidopsis FILAMENTOUS FLOWER (FIL) gene encodes a YABBY (YAB) family putative transcription factor that has been implicated in specifying abaxial cell identities and thus regulating organ polarity of lateral organs. In contrast to double mutants of fil and other YAB genes, fil single mutants display mainly floral and inflorescence morphological defects that do not reflect merely a loss of abaxial identity. Recently, FIL and other YABs have been shown to regulate meristem organization in a non-cell-autonomous manner. In a screen for new mutations affecting floral organ morphology and development, we have identified a novel allele of FIL, fil-9 and characterized its floral and meristem phenotypes. Results The fil-9 mutation results in highly variable disruptions in floral organ numbers and size, partial homeotic transformations, and in defective inflorescence organization. Examination of meristems indicates that both fil-9 inflorescence and floral meristems are enlarged as a result of an increase in cell number, and deformed. Furthermore, primordia emergence from these meristems is disrupted such that several primordia arise simultaneously instead of sequentially. Many of the organs produced by the inflorescence meristems are filamentous, yet they are not considered by the plant as flowers. The severity of both floral organs and meristem phenotypes is increased acropetally and in higher growth temperature. Conclusions Detailed analysis following the development of fil-9 inflorescence and flowers throughout flower development enabled the drawing of a causal link between multiple traits of fil-9 phenotypes. The study reinforces the suggested role of FIL in meristem organization. The loss of spatial and temporal organization of fil-9 inflorescence and floral meristems presumably leads to disrupted cell allocation to developing floral organs and to a blurring of organ whorl boundaries. This disruption is reflected in morphological and organ identity aberrations of fil-9 floral organs and in the production of filamentous organs that are not perceived as flowers. Here, we show the role of FIL in reproductive meristem development and emphasize the potential of using fil mutants to study mersitem organization and the related effects on flower morphogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocotea catharinensis is a basal angiosperm and an endangered tree species from the Brazilian Atlantic Rain Forest. Despite its economical and ecological importance, mass-propagation of this species is hampered by seldom-produced short-lived seeds, and in vitro propagation is challenged by frequently malformed somatic embryos. Therefore, O. catharinensis somatic embryos are also a good experimental material to study the physiological and molecular mechanisms underlying in vitro morphogenesis. In an ongoing effort to characterize genes expressed during somatic embryogenesis of O. catharinensis we have cloned two Ocotea WUSCHEL-related genes. According to our RT-PCR data, both genes were preferentially expressed in embryogenic cell aggregates. One of them, OcWUS, is a possible ortholog of the Arabidopsis WUSCHEL (WUS) gene, which codes for a homeodomain-containing protein involved in the specification and maintenance of the shoot apical meristem. We analyzed the expression patterns of OcWUS and OcWOX4 by RT-PCR, and OcWUS expression was also assessed by in situ hybridization. The expression patterns of OcWUS were very similar to those described for the Arabidopsis WUS. OcWUS transcripts were generally restricted to a small group of cells in the center of the putative shoot apical meristem of O. catharinensis somatic embryos. Perturbed expression of OcWUS might be related to abnormally formed somatic embryos of O. catharinensis obtained through tissue culture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Floral meristems are generally determinate. Termination of their activity varies with species, occurring after carpel or ovule development, depending on the placentation type. In terminal flowering Impatiens balsamina (cv. Dwarf Bush Flowered) some flowers exhibit meristem indeterminacy; they produce organs from the placenta after ovule development. Here we provide a detailed description of gynoecium development in this line and explore the basis of the indeterminate nature of some of its floral meristems. We find that the placenta is sometimes established without complete carpel fusion. Proliferative growth derives from meristematic remnants of the placenta and is more common in the terminal inflorescence. RNA in situ hybridization reveals that IbLFY (Impatiens LFY homologue) is expressed in all meristem states, even in proliferating meristems. Expression of IbAG in axillary flowers is as expected in the meristem, stamens and carpels but absent from the proliferating meristem. We conclude that I. balsamina has cauline placentation. Incomplete suppression of inflorescence identity in flowers of the terminal inflorescence leads to floral meristem proliferation after ovule development in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kernel weight is an important factor determining grain yield and nutritional quality in sorghum, yet the developmental processes underlying the genotypic differences in potential kernel weight remain unclear. The aim of this study was to determine the stage in development at which genetic effects on potential kernel weight were realized, and to investigate the developmental mechanisms by which potential kernel weight is controlled in sorghum. Kernel development was studied in two field experiments with five genotypes known to differ in kernel weight at maturity. Pre-fertilization floret and ovary development was examined and post-fertilization kernel-filling characteristics were analysed. Large kernels had a higher rate of kernel filling and contained more endosperm cells and starch granules than normal-sized kernels. Genotypic differences in kernel development appeared before stamen primordia initiation in the developing florets, with sessile spikelets of large-seeded genotypes having larger floret apical meristems than normal-seeded genotypes. At anthesis, the ovaries for large-sized kernels were larger in volume, with more cells per layer and more vascular bundles in the ovary wall. Across experiments and genotypes, there was a significant positive correlation between kernel dry weight at maturity and ovary volume at anthesis. Genotypic effects on meristem size, ovary volume, and kernel weight were all consistent with additive genetic control, suggesting that they were causally related. The pre-fertilization genetic control of kernel weight probably operated through the developing pericarp, which is derived from the ovary wall and potentially constrains kernel expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary growth of plants is of pivotal importance in terrestrial ecosystems, providing a significant carbon sink in the form of wood. As plant biomass accumulation results largely from the cambial growth, it is surprising that quite little is known about the hormonal or genetic control of this important process in any plant species. The central aim of my thesis studies was to explore the function of cytokinin in the regulation of cambial development. Since their discovery as regulators of plant cell divisions, cytokinins have been assumed to participate in the control of cambial development. Evidence for this action was deduced from hormone treatment experiments, where exogenously applied cytokinin was shown to enhance cambial cell divisions in diverse plant organs and species. In my thesis work, the conservation of cytokinin signalling and homeostasis genes between a herbaceous plant, Arabidopsis, and a hardwood tree species, Populus trichocarpa. Presumably reflecting the ancient origin of cytokinin signalling system, the Populus genome contains orthologs for all Arabidopsis cytokinin signalling and homeostasis genes. Thus, genes belonging to five main families of isopentenyl transferases (IPTs), cytokinin oxidases (CKXs), two-component receptors, histidine containing phosphotransmitters (HPts) and response regulators (RRs) were identified from the Populus genome. Three subfamilies associated with cytokinin signal transduction, the CKI1-like family of two-component receptors, the AHP4-like HPts, and the ARR22-like atypical RRs, were significantly larger in Populus genome than in Arabidopsis. Potential contribution to the extensive secondary development of Populus by the members of these considerably expanded gene families will be discussed. Representatives of all cytokinin signal transduction elements were expressed in the Populus cambial zone, and most of the expressed genes appeared to be slightly more abundant on the phloem side of the meristem. The abundance of cytokinin related genes in the cambium emphasizes the important role of this hormone in the regulation of the extensive secondary growth characteristic of tree species. The function of the pseudo HPts in primary vascular development was studied in Arabidopsis root vasculature. It was demonstrated that the pseudo HPt AHP6 has a role in locally inhibiting cytokinin signalling in the protoxylem position in the Arabidopsis root, thus enabling differentiation of the protoxylem cell file. The possible role of pseudo HPts in cambial development will be discussed. The expression peak of cytokinin signalling genes in the tree cambial zone strongly indicates that cytokinin has a role in the regulation of this meristem function. To address whether cytokinin signalling is required for cambial activity, transgenic Populus trees with modified cytokinin signalling were produced. These trees were expressing a cytokinin catabolic gene from Arabidopsis, CYTOKININ OXIDASE 2, (AtCKX2) under the promoter of a Betula CYTOKININ RECEPTOR 1 (BpCRE1). The pBpCRE1::CKX2 transgenic Populus trees showed a reduced concentration of a biologically active cytokinin, correlating with their impaired cytokinin response. Furthermore, the radial growth of these trees was compromised, as illustrated by a smaller stem diameter than in wild-type trees of the same height. Moreover, the level of cambial cytokinin signalling was down-regulated in these thin-stemmed trees. The reduced signalling correlated with a decreased number of meristematic cambial cells, implicating cytokinin activity as a direct regulator of cambial cell division activity. Together, the results of my study indicate that cytokinins are major hormonal regulators required for cambial development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem (SAM) organisation. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Major Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid multiplication of axillary meristems and direct shoot development occurred from nodal explants of mature Eucalyptus tereticornis Sm. with 5.3 mgrM NAA, 1.1 mgrM IAA and 4.4 mgrM BA in Murashige-Skoog medium. Repeated subcultures of the second generation shoot cultures into low cytokinin-auxin containing media (0.44�0.88 mgrM BA+0.1 mgrM NAA) yielded axillary microshoots in large numbers. Half-strength MS liquid medium with 4.9 mgrM IBA, 5.5 mgrM IAA and 5.3 mgrM NAA for four days, half-strength semi-solid hormonefree MS medium with charcoal, and MS liquid medium without charcoal and hormones, in sequence, induced rooting of shoots in the dark. This system is suitable for the mass propagation of this difficult-to-root eucalypt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Floral organogenesis and development of two Solanaceae species, Anisodus tanguticus and Atropa belladonna, were studied by using scanning electron microscopy (SEM) as part of a project on systematics and evolution in the tribe Hyoscyameae. These two species share the following common characters of floral organ initiation and development: (1) initiation of the floral organs in the two species follows Hofmeister's rule; (2) the mode of corolla tube development belongs to the "late sympetaly" type, namely, petals are initiated separately and later become joined by fusion of their basal meristem, then rise together and form a corolla tube; (3) primordia of the floral appendages are initiated in a pentamerous pattern and acropetal order: sepals are initiated first, followed by the petals and stamens, and finally the carpels. The whorl of five stamen primordia forms almost simultaneously and originates opposite the sepal primordia, but initiation of the sepal primordia shows different modes in the two species. The sepal primordia of Anisodus tanguticus have simultaneously whorled initiation, while those of Atropa belladonna have helical initiation. The systematic significance of the present results in the genera Anisodus and Atropa is discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flowering is generally considered to be advanced by water deficits in many woody perennial species. A long-standing paradigm being that as a plant senses severe environmental conditions resources are diverted away from vegetative growth and towards reproduction before death. It is demonstrated that in Rhododendron flowering is promoted under water deficit treatments. However, the promotion of flowering is not achieved via all increase in floral initiation, but through separate developmental responses. If regulated deficit irrigation (RDI) is imposed prior to the time of initiation, fewer vegetative nodes are formed before the apical meristems switch to floral initiation, and chronologically, floral initiation occurs earlier. Both RDI and partial rootzone drying (PRD) treatments stimulate the development of more flowers Oil each inflorescence if the treatments are continued after the plant has undergone floral initiation. However, floral initiation is inhibited by soil water deficits. If the soil water deficit continues beyond the stages of floral development then anthesis call occur prematurely oil the fully formed floral buds without a need for a winter chilling treatment. It is hypothesised that inhibition of floral initiation in plants experiencing severe soil water deficits results from the inhibitory action Of ABA transportation to the apical meristem from stressed roots. It is demonstrated that ABA applications to well-watered Rhododendron inhibit floral initiation. (c) 2008 Elsevier B.V. All rights reserved.