868 resultados para MERCURIC IODIDE
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
N,N-Dimethyl-pyrrolidinium iodide, and the effect of doping with LiI, has been investigated using DSC, NMR, and impedance spectroscopy. It was found that the addition of a small amount of LiI enhances the ionic conductivity by LIP to 3 orders of magnitude for this ionic solid. Furthermore, a slight decrease in phase transition onset temperatures, as well as the appearance of a superimposed narrow line in the H-1 NMR spectra with dopant, suggest that the LiI facilitates the mobility of the matrix material, possibly by the introduction of vacancies within the lattice. Li-7 NMR line width measurements reveal a narrow Li line width, decreasing in width and increasing in intensity with temperature, indicating mobile Li ions.
Resumo:
Context: The expression of sodium iodide symporter (NIS) is required for iodide uptake in thyroid cells. Benign and malignant thyroid tumors have low iodide uptake. However, previous studies by RT-PCR or immunohistochemistry have shown divergent results of NIS expression in these nodules. Objective: The objective of the study was to investigate NIS mRNA transcript levels, compare with NIS and TSH receptor proteins expression, and localize the NIS protein in thyroid nodules samples and their surrounding nonnodular tissues (controls). Design: NIS mRNA levels, quantified by real-time RT-PCR, and NIS and TSH receptor proteins, evaluated by immunohistochemistry, were examined in surgical specimens of 12 benign and 13 malignant nodules and control samples. Results: When compared with controls, 83.3% of the benign and 100% of the malignant nodules had significantly lower NIS gene expression. Conversely, 66.7% of the benign and 100% of malignant nodules had stronger intracellular NIS immunostaining than controls. Low gene expression associated with strong intracellular immunostaining was most frequently detected in malignant (100%) than benign nodules (50%; P = 0.005). NIS protein was located at the basolateral membrane in 24% of the control samples, 8.3% of the benign, and 15.4% of the malignant nodules. The percentage of benign nodules with strong TSH receptor positivity (41.6%) was higher than malignant (7.7%). Conclusion: We confirmed that reduced NIS mRNA expression in thyroid malignant nodules is associated with strong intracellular protein staining and may be related to the inability of the NIS protein to migrate to the cellular basolateral membrane. These results may explain the low iodide uptake of malignant nodules.
Resumo:
The placenta must allow the passage of iodide from the maternal to the fetal circulation for synthesis of thyroxine by the fetal thyroid. The thyroid sodium iodide symporter (NIS) was cloned in 1996 and, although widely distributed among epithelial tissues, early studies failed to detect it in placenta. We demonstrated NIS mRNA in human placenta and in the human choriocarcinoma cell line, JAr. NIS protein was localized to trophoblasts, with a tendency to apical distribution, in sections of human placenta immunostained with a monoclonal antibody against hNIS. We conclude that NIS is expressed in placenta and may mediate placental iodide transport. (C) 2001 Harcourt Publishers Ltd.
Resumo:
BACKGROUND: Sporotrichosis is a subacute or chronic disease caused by a dimorphic fungus, Sporothrix schenckii. The first and most traditional treatment is potassium iodide in satured solution (SSKI) used by DE BEURMANN in 1907. For its effectiveness, it is still used for cutaneous sporotrichosis. OBJECTIVE: To evaluate the treatment of cutaneous sporotrichosis with SSKI in relation to clinical cure, side effects, length of treatment and reactivation. METHODS: We conducted a retrospective analysis of medical records over a 24-year period (1981-2005). Patients of all ages who were treated in the hospital´s division of dermatology were included in the study providing that they had a positive culture of S. schenckii. Satured solution of potassium iodide (3 to 6g per day) was the treatment prescribed. For children, half of the dose was prescribed. RESULTS: The lymphocutaneous disease was prevalent, the cure rate was 94.7%, side effects were described in 5.5% of the cases, mean length of treatment was 3.5 months and possible reactivation was observed in 11.1%. CONCLUSION: SSKI is an effective drug, with many side effects, but with low frequency. Resolution was for maximum six months of treatment. SSKI has been found to be a very effective drug in this retrospective study of culture-proven cases of cutaneous and lymphocutaneous sporotrichosis. It should be used as first drug of choice especially in resource-limited settings.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02), to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003), and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02). In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02). A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.
Resumo:
Nonobese diabetic (NOD) mice and a derived strain, NOD.H.2h4, have been used as a model for experimental spontaneous thyroiditis and thyroiditis induced by iodide excess after a goiter-inducing period. Some authors have proposed that iodide, given after methimazole or propylthiouracil, is capable of inducing apoptosis in thyroid cells and that anti-thyroid drugs can modulate the expression of apoptosis components such as Fas and its ligand (Fas-L). Here we evaluated the effect of potassium iodide (20 µg/animal for 4 days, ip) given to NOD mice at the 10th week of life after exposure to methimazole (1 mg/ml) in drinking water from the 4th to the 10th week of life. Fas, Fas-L and Bcl-w expression were analyzed semiquantitatively by RT-PCR immediately after potassium iodide administration (group MI44D) or at week 32 (MI32S). Control groups were added at 10 (C10) and 32 weeks (C32), as well as a group that received only methimazole (CM10). An increase in the expression of Fas-L and Bcl-w (P<0.01, ANOVA) was observed in animals of group MI44D, while Fas was expressed at higher levels (P = 0.02) in group C32 (72.89 ± 47.09 arbitrary units) when compared to group C10 (10.8 ± 8.55 arbitrary units). Thus, the analysis of Fas-L and Bcl-w expression in the MI44D group and Fas in group C32 allowed us to detect two different patterns of expression of these apoptosis components in thyroid tissue of NOD mice.
Resumo:
The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1), and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO), total radical trapping antioxidant potential (TRAP), and superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT). HgCl2 administration induced a rise (by 26%) in LPO compared to control (143 ± 10 cps/mg hemoglobin) in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24%, respectively) in the Hg group, and Cu,Zn-SOD was lower (54%) compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10%, respectively) in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively). TRAP was lower (69%) in the first week compared to control (43.8 ± 1.9 mM Trolox). These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.
Resumo:
The nature of the diperiodatocuprate(III) (DPC) species present in aqueous alkaline medium has been investigated by a kinetic and mechanistic study on the oxidation of iodide by DPC. The reaction kinetics were studied over the 1.0 ´ 10)3±0.1 mol dm)3 alkali range. The reaction order with respect to DPC, as well as iodide, was found to be unity when [DPC] [I)]. In the 1.0 ´ 10)3±1.0 ´ 10)2 mol dm)3 alkali region, the rate decreased with increase in the alkali concentration and a plot of the pseudo-®rst order rate constant, k versus 1/[OH)] was linear. Above 5.0 ´ 10)2 mol dm)3, a plot of k versus [OH)] was also linear with a non-zero intercept. An increase in ionic strength of the reaction mixtures showed no e ect on k at low alkali concentrations, whereas at high concentrations an increase in ionic strength leads to an increase in k. A plot of 1/k versus [periodate] was linear with an intercept in both alkali ranges. Iodine was found to accelerate the reaction at the three di erent alkali concentrations employed. The observed results indicated the following equilibria for DPC.
Resumo:
Kinetics of mercuric chloride catalysed solvolysis of l-butyl chloride, benzyl chloride. p-methylbenzyl chloride, l-phenylethyl chloride and triethylcarbinyl chloride have been studied in aq. DMSO, aq. acetonitrile and aq. ethanol. The kinetic data fit a second order rate equation in aq. DMSO. The calculated values of the second order rate coefficients increase in the case of aq. acetonitrile and aq. ethanol. The order in catalyst in 95%(v/v) aq. DMSO is less than unity.
Resumo:
Kinetics of mercuric chloride catalysed solvolysis of benzyl chloride have been studied in water. 10% aq. ethanol, 10,20 and 30% aq. acetone and 20% aq. DMSO. The results confirm the operation of a mass law effect.
Resumo:
Absolute intensity measurements have been made on the fundamental vibrations of methyl chloride, bromide, and iodide, and their fully deuterated derivatives, by integrating the optical density over the absorption bands. The bands were fully pressure broadened by using up to 80 atmos of foreign gas. Band separations were made graphically. The results are analyzed in terms of the dipole moment derivatives with respect to symmetry coordinates in the molecule, (∂p/∂Si). The data on the different isotopic species are shown to yield consistent results, and this requirement of consistency has also been used as an aid in the analysis. In the E‐class vibrations the signs of the dipole moment derivatives have been determined unambiguously by assuming the permanent dipole to be directed CH3+☒X—.
Resumo:
With a cesium-iodide prism the long wavelength range of an infrared spectrometer may be extended to 55µ The use of such a prism, the choice of optical system, and the problems of stray radiation are all discussed. Accurate data are assembled for calibration in this region, and sample calibration traces are shown. A simple gas absorption cell is described for use at long wavelengths.