898 resultados para MEMBRANE-LIPID PEROXIDATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semen manipulation and cryopreservation-thaw procedures may accelerate the generation of reactive oxygen species (ROS). Sperm exposure to large amounts of ROS has been shown to cause membrane lipid peroxidation and cellular injury to the sperm. The objective of this study was to overcome the ROS production in frozen-thawed ram semen by the addition of the antioxidants catalase or Trolox to semen following thawing. Frozen-thawed ram semen (100 x 10(6) sperm/straw) was supplemented with PBS (control group), 100 mu g/ml catalase, or 100 mu M Trolox/10(8) sperm (catalase and Trolox being dissolved in PBS) and incubated (37 degrees C) for 5 min. Under the experimental conditions used in this study, the catalase and Trolox antioxidants failed to protect the sperm from the spontaneous production of ROS. However, when lipid peroxidation was induced by iron (FeSO(4)), the addition of Trolox promoted a reduction (P < 0.05) in the formation of TBARS in the semen, compared to the control and catalase semen samples. The generation of TBARS and H(2)O(2) occurred in the extender alone, without the presence of sperm cells. In conclusion, the addition of Trolox to frozen-thawed ram semen could be beneficial as it decreases the production of TBARS when oxidative stress is induced. It is possible that a longer incubation period could lead to different results. The concentration of catalase also needs to be further evaluated. The extender could contribute to the oxidative stress of sperm, as it is a source of ROS during the cryopreservation of semen. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cadmium (Cd) influences lipid peroxidation (LPO) by enhancing peroxidation of membrane lipids and by disturbing the antioxidant system of cells. In isolated rat hepatocytes, LPO was observed in cells incubated with Cd (50-250 mu M) for various time periods up to 90 min. The antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) were inhibited along with depletion of glutathione (GSH) in hepatocytes treated with Cd. The results show that Cd influences LPO in rat hepatocytes due to decrease in antioxidant status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitory effects of high molecular weight phlorotannins (HMP) from Sargassum kjellmanianum on mouse liver lipid peroxidation were investigated by spectrophotometric methods. The content of malondialdehyde (MDA) in liver samples was measured by TBA (thiobarbituric acid) assay. It showed that HMP significantly inhibited the generation of MDA in vivo and in situations induced by CCl4 and Fe2+-Vc ( ascorbic acid), and significantly decreased membrane swelling of mouse liver mitochondria, compared with controls ( p < 0.01). HMP were found to have strong anti-oxidative activity in inhibiting mouse liver lipid peroxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When calcinine (A-23187) (2 mu M), a known Ca2+ ionophore, is present, a significant protection is observed to a mitochondrial suspension undergoing lipid peroxidation by Fe2+-citrate complex. A-23187 can remove Ca2+, which seems to have an important role in the lipid peroxidation process, from its 'lesive sites' and consequently preventing the damage. This information has importance in terms of knowing the mechanisms and avoiding the damages of lipid peroxidation that occur in some pathological cases such as tumor promotion and hemochromatosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell-specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8(+) T cells from T(ΔGpx4/ΔGpx4) mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8(+) and CD4(+) T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of NADH by rat brain microsomes was stimulated severalfold on addition of vanadate. During the reaction, vanadate was reduced, oxygen was consumed, and H2O2 was generated with a stoichiometry of 1:1 for NADH/O2, as in the case of other membranes. Extra oxygen was found to be consumed over that needed for H2O2 generation specifically when brain microsomes were used. This appears to be due to the peroxidation of lipids known to be accompanied by a large consumption of oxygen. Occurrence of lipid peroxidation in brain microsomes in the presence of NADH and vanadate has been demonstrated. This activity was obtained specifically with the polymeric form of vanadate and with NADH, and was inhibited by the divalent cations Cu2+, Mn2+, and Ca2+, by dihydroxy-phenolic compounds, and by hemin in a concentration-dependent fashion. In the presence of a small concentration of vanadate, addition of an increasing concentration of Fe2+ gave increasing lipid peroxidation. After undergoing lipid peroxidation in the presence of NADH and vanadate, the binding of quinuclidinyl benzylate, a muscarinic antagonist, to brain membranes was decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of redox systems in microsomes of brown adipose tissue (BAT) in cold exposed rats was investigated and compared with liver. BAT microsomes showed high activity of lipid peroxidation measured both by the formation of malondialdehyde (MDA) and by oxygen uptake. NADH and NADPH dependent cytochrome c reductase activity were present in both BAT and liver microsomes. Aminopyrine demethylase and aniline hydroxylase activities, the characteristic detoxification enzymes in liver microsomes could not be detected in BAT microsomes. BAT minces showed very poor incorporation of [1-14C]acetate and [2-14C]-mevalonate in unsaponifiable lipid fraction compared to liver. Biosynthesis of cholesterol and ubiquinone, but not fatty acids, and the activity of 3-hydroxy-3-methyl glutaryl CoA reductase appear to be very low in BAT. Examination of difference spectra showed the presence of only cytochrome b 5 in BAT microsomes. In addition to the inability to detect the enzyme activities dependent on cytochrome P-450, a protein with the characteristic spectrum, molecular size in SDS-PAGE and interaction with antibodies in double diffusion test, also could not be detected in BAT microsomes. The high activity of lipid peroxidation in microsomes, being associated with large oxygen uptake and oxidation of NADPH, will also contribute to the energy dissipation as heat in BAT, considered important in thermogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5�8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subcutaneous administration of methyl isocyanate (MIC) in 1.0 LD50 dose in rats caused a significant effect on hepatic mitochondrial function only at complex I region of the respiratory chain. MIC administration at 1.0 LD50 dose also resulted in significant increases in malondialdehyde and ferrous ion concentration in liver mitochondria. It is suggested that the augmented lipid peroxidation in hepatic mitochondria, catalyzed by iron, possibly mobilized from intracellular stores leads to the inhibition of enzymes of mitochondrial respiration at complex I region, in vivo, in rats receiving a lethal dose of MIC subcutaneously.