966 resultados para MELATONIN MODULATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-a, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to verify, by means of functional methods, whether the circadian rhythm changes adrenergic response patterns in the epididymal half of the vas deferens isolated from control rats as well as from rats submitted to acute stress. The experiments were performed at 9:00 a.m., 3:00 p.m., 9:00 p.m., and 3:00 a.m. The results showed a light-dark dependent variation of the adrenergic response pattern on organs isolated from control as well as from stressed rats. In the control group, only the phenylephrine sensitivity was changed throughout the circadian rhythm. Under the stress condition, both norepinephrine and phenylephrine response patterns were changed, mainly during darkness. The maximal contractile response to both alpha- and beta-agonist and alpha(1)-agonist was increased in the dark phase, corresponding to high plasmatic concentrations of endogenous melatonin. The vas deferens isolated from stressed rats during the light phase simultaneously incubated with exogenous melatonin showed the same pattern of response obtained in the dark phase, thus indicating a peripheric action of melatonin on this organ. Therefore, the circadian rhythms are important to the adrenergic response pattern in rat vas deferens from both control and stressed rats. In conclusion, we suggest a melatonin modulation on alpha(1)-postsynaptic adrenergic response in the rat vas deferens. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The avian circadian system is composed of the retina, the mammalian homolog region of the suprachiasmatic nucleus (SNC), and the pineal gland. The retina, itself, displays many rhythmic physiological events, such as movements of photoreceptor cells, opsin expression, retinal reisomerization, and melatonin and dopamine production and secretion. Altogether, these rhythmic events are coordinated to predict environmental changes in light conditions during the day, optimizing retina function. The authors investigated the expression pattern of the melanopsin genes Opn4x and Opn4m, the clock genes Clock and Per2, and the genes for the key enzymes N-Acetyltransferase and Tyrosine Hidroxylase in chicken embryo dispersed retinal cells. Primary cultures of chicken retina from 8-day-old embryos were kept in constant dark (DD), in 12-h light/12-h dark (12L:12D), in 12L:12D followed by DD, or in DD in the absence or presence of 100 mu M glutamate for 12 h. Total RNA was extracted throughout a 24-h span, every 3 h starting at zeitgeber time 0 (ZT0) of the 6th day, and submitted to reverse transcriptase-polymerase chain reaction (RT-PCR) followed by quantitative PCR (qPCR) for mRNA quantification. The data showed no rhythmic pattern of transcription for any gene in cells kept in DD. However under a light-dark cycle, Clock, Per2, Opn4m, N-Acetyltransferase, and Tyrosine Hydroxylase exhibited rhythmic patterns of transcription. In DD, 100 mu M glutamate was able to induce rhythmic expression of Clock, strongly inhibited the expression of Tyrosine Hydroxylase, and, only at some ZTs, of Opn4x and Opn4m. The neurotransmitter had no effect on Per2 and N-Acetyltransferase transcription. The authors confirmed the expression of the protein OPN4x by immunocytochemistry. These results suggest that chicken embryonic retinal cells contain a functional circadian clock, whose synchronization requires light-dark cycle or glutamate stimuli. (Author correspondence: amdlcast@ib.usp.br).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells, subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free radical theory of ageing postulates that age-associated neurodegeneration is caused by an imbalance between pro-oxidants and antioxidants resulting in oxidative stress. The current study showed regional variation in brain susceptibility to age-associated oxidative stress as shown by increased lipofuscin deposition and protein carbonyl levels in male rats of age 15-16 months compared to control ones (3-5 months). The hippocampus is the area most vulnerable to change compared to the cortex and cerebellum. However, proteasomal enzyme activity was not affected by age in any of the brain regions studied. Treatment with melatonin or coenzyme Q10 for 4 weeks reduced the lipofuscin content of the hippocampus and carbonyl level. However, both melatonin and coenzyme Q10 treatments inhibited beta-glutamyl peptide hydrolase activity. This suggests that these molecules can alter proteasome function independently of their antioxidant actions. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that melatonin influences the development of alpha 8 nicotinic acetylcholine receptor (nAChR) by measurement of the acetylcholine-induced increase in the extracellular acidification rate (ECAR) in chick retinal cell cultures. Cellular differentiation that takes place between DIV (days in vitro) 4 and DIV 5 yields cells expressing alpha 8 nAChR and results in a significant increase in the ECAR acetylcholine-induced. Blocking melatonin receptors with luzindole for 48 h suppresses the development of functional alpha 8 nAChR. Here we investigated the time window for the effect of melatonin on retinal cell development in culture, and whether this effect was dependent on an increase in the expression of alpha 8 nAChR. First, we confirmed that luzindole was inhibiting the effects of endogenous melatonin, since it increases 2-[(125)I] iodomelatonin (23 pM) binding sites density in a time-dependent manner. Then we observed that acute (15, 60 min, or 12 h) luzindole treatment did not impair acetylcholine-induced increase in the ECAR mediated by activation of alpha 8 nAChR at DIV 5, while chronic treatment (from DIV 3 or DIV 4 till DIV 5, or DIV 3.5 till DIV 4.5) led to a time-dependent reduction of the increase in the acetylcholine-induced ECAR. The binding parameters for [(125)I]-alpha-bungarotoxin (10 nM) sites in membrane were unaffected by melatonin suppression that started at DIV 3. Thus, melatonin surges in the time window that occurs at the final stages of chick retinal cell differentiation in culture is essential for development of the cells expressing alpha 8 nAChR subtype in full functional form. (C) 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of mclatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(-8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melatonin diminishes insulin release through the activation of MT1 receptors and a reduction in cAMP production in isolated pancreatic islets of neonate and adult rats and in INS-1 cells ( an insulin-secreting cell line). The pancreas of pinealectomized rats exhibits degenerative pathological changes with low islet density, indicating that melatonin plays a role to ensure the functioning of pancreatic beta cells. By using immunoprecipitation and immunoblotting analysis we demonstrated, in isolated rat pancreatic islets, that melatonin induces insulin growth factor receptor (IGF-R) and insulin receptor (IR) tyrosine phosphorylation and mediates the activities of the PI3K/AKT and MEK/ERKs pathways, which are involved in cell survival and growth, respectively. Thus, the effects of melatonin on pancreatic islets do not involve a reduction in cAMP levels only. This indoleamine may regulate growth and differentiation of pancreatic islets by activating IGF-I and insulin receptor signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic cardiomyopathy is the most important clinical form of Chagas disease, and it is characterised by myocarditis that is associated with fibrosis and organ dysfunction. Alternative treatment options are important tools to modulate host immune responses. The main goal of this work was to evaluate the anti-inflammatory actions of melatonin during the chronic phase of Chagas disease. TNF-α, IL-10 and nitrite concentrations were evaluated as predictive factors of immune modulation. Creatine phosphokinase-MB (CK-MB), cardiac inflammatory foci and heart weight were assessed to evaluate the efficacy of the melatonin treatment. Male Wistar rats were infected with 1 × 105 blood trypomastigotes of the Y strain of Trypanosoma cruzi and kept untreated for 60 days to mimic chronic infection. After this period, the rats were orally treated with melatonin 50 mg/kg/day, and the experiments were performed 90, 120, and 180 days post-infection. Melatonin treatment significantly increased the concentration of IL-10 and reduced the concentrations of NO and TNF-α produced by cardiomyocytes. Furthermore, it led to decreased heart weight, serum CK-MB levels and inflammatory foci when compared to the untreated and infected control groups. We conclude that melatonin therapy is effective at protecting animals against the harmful cardiac inflammatory response that is characteristic of chronic T. cruzi infection. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported that melatonin modulates the Plasmodium falciparum erythrocytic cycle by increasing schizont stage population as well as diminishing ring stage population. In addition, the importance of calcium and cAMP in melatonin signaling pathway in P. falciparum was also demonstrated. Nevertheless, the molecular effectors of the indoleamine signaling pathway remain elusive. We now demonstrate by real-time PCR that melatonin treatment up-regulates genes related to ubiquitin/proteasome system (UPS) components and that luzindole, a melatonin receptor antagonist, inhibits UPS transcription modulation. We also show that protein kinase PfPK7, a P. falciparum orphan kinase, plays a crucial role in the melatonin transduction pathway, since following melatonin treatment of P. falciparum parasites where pfpk7 gene is disrupted (pfpk7- parasites) (i) the ratio of asexual stages remain unchanged, (ii) the increase in cytoplasmatic calcium in response to melatonin was strongly diminished and (iii) up-regulation of UPS genes did not occur. The wild-type melatonin-induced alterations in cell cycle features, calcium rise and UPS gene transcription were restored by re-introduction of a functional copy of the pfpk7 gene in the pfpk7- parasites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that during inflammatory responses the nuclear factor kappa B (NF-kappa B) induces the synthesis of melatonin by macrophages and that macrophage-synthesized melatonin modulates the function of these professional phagocytes in an autocrine manner. Expression of a DsRed2 fluorescent reporter driven by regions of the aa-nat promoter, that encodes the key enzyme involved in melatonin synthesis (arylalkylamine-N-acetyltransferase), containing one or two upstream kappa B binding sites in RAW 264.7 macrophage cell lines was repressed when NF-kappa B activity was inhibited by blocking its nuclear translocation or its DNA binding activity or by silencing the transcription of the RelA or c-Rel NF-kappa B subunits. Therefore, transcription of aa-nat driven by NF-kappa B dimers containing RelA or c-Rel subunits mediates pathogen-associated molecular patterns (PAMPs) or pro-inflammatory cytokine-induced melatonin synthesis in macrophages. Furthermore, melatonin acts in an autocrine manner to potentiate macrophage phagocytic activity, whereas luzindole, a competitive antagonist of melatonin receptors, decreases macrophage phagocytic activity. The opposing functions of NF-kappa B in the modulation of AA-NAT expression in pinealocytes and macrophages may represent the key mechanism for the switch in the source of melatonin from the pineal gland to immune-competent cells during the development of an inflammatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE ( 1 µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception