987 resultados para MEDICAL IMAGING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical imaging is a powerful diagnostic tool. Consequently, the number of medical images taken has increased vastly over the past few decades. The most common medical imaging techniques use X-radiation as the primary investigative tool. The main limitation of using X-radiation is associated with the risk of developing cancers. Alongside this, technology has advanced and more centres now use CT scanners; these can incur significant radiation burdens compared with traditional X-ray imaging systems. The net effect is that the population radiation burden is rising steadily. Risk arising from X-radiation for diagnostic medical purposes needs minimising and one way to achieve this is through reducing radiation dose whilst optimising image quality. All ages are affected by risk from X-radiation however the increasing population age highlights the elderly as a new group that may require consideration. Of greatest concern are paediatric patients: firstly they are more sensitive to radiation; secondly their younger age means that the potential detriment to this group is greater. Containment of radiation exposure falls to a number of professionals within medical fields, from those who request imaging to those who produce the image. These staff are supported in their radiation protection role by engineers, physicists and technicians. It is important to realise that radiation protection is currently a major European focus of interest and minimum competence levels in radiation protection for radiographers have been defined through the integrated activities of the EU consortium called MEDRAPET. The outcomes of this project have been used by the European Federation of Radiographer Societies to describe the European Qualifications Framework levels for radiographers in radiation protection. Though variations exist between European countries radiographers and nuclear medicine technologists are normally the professional groups who are responsible for exposing screening populations and patients to X-radiation. As part of their training they learn fundamental principles of radiation protection and theoretical and practical approaches to dose minimisation. However dose minimisation is complex – it is not simply about reducing X-radiation without taking into account major contextual factors. These factors relate to the real world of clinical imaging and include the need to measure clinical image quality and lesion visibility when applying X-radiation dose reduction strategies. This requires the use of validated psychological and physics techniques to measure clinical image quality and lesion perceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims of study: 1) Describe the importance of human visual system on lesion detection in medical imaging perception research; 2) Discuss the relevance of research in medical imaging addressing visual function analysis; 3) Identify visual function tests which could be conducted on observers prior to participation in medical imaging perception research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Medical image perception research relies on visual data to study the diagnostic relationship between observers and medical images. A consistent method to assess visual function for participants in medical imaging research has not been developed and represents a significant gap in existing research. Methods - Three visual assessment factors appropriate to observer studies were identified: visual acuity, contrast sensitivity, and stereopsis. A test was designed for each, and 30 radiography observers (mean age 31.6 years) participated in each test. Results - Mean binocular visual acuity for distance was 20/14 for all observers. The difference between observers who did and did not use corrective lenses was not statistically significant (P = .12). All subjects had a normal value for near visual acuity and stereoacuity. Contrast sensitivity was better than population norms. Conclusion - All observers had normal visual function and could participate in medical imaging visual analysis studies. Protocols of evaluation and populations norms are provided. Further studies are necessary to understand fully the relationship between visual performance on tests and diagnostic accuracy in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PhD Thesis in Sciences Specialization in Chemistry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project, we have investigated new ways of modelling and analysis of human vasculature from Medical images. The research was divided in two main areas: cerebral vasculature analysis and coronary arteries modeling. Regarding cerebral vasculature analysis, we have studed cerebral aneurysms, internal carotid and the Circle of Willis (CoW). Aneurysms are abnormal vessel enlargements that can rupture causing important cerebral damages or death. The understanding of this pathology, together with its virtual treatment, and image diagnosis and prognosis, includes identification and detailed measurement of the aneurysms. In this context, we have proposed two automatic aneurysm isolation method, to separate the abnormal part of the vessel from the healthy part, to homogenize and speed-up the processing pipeline usually employed to study this pathology, [Cardenes2011TMI, arrabide2011MedPhys]. The results obtained from both methods have been also compared and validatied in [Cardenes2012MBEC]. A second important task here the analysis of the internal carotid [Bogunovic2011Media] and the automatic labelling of the CoW, Bogunovic2011MICCAI, Bogunovic2012TMI]. The second area of research covers the study of coronary arteries, specially coronary bifurcations because there is where the formation of atherosclerotic plaque is more common, and where the intervention is more challenging. Therefore, we proposed a novel modelling method from Computed Tomography Angiography (CTA) images, combined with Conventional Coronary Angiography (CCA), to obtain realistic vascular models of coronary bifurcations, presented in [Cardenes2011MICCAI], and fully validated including phantom experiments in [Cardene2013MedPhys]. The realistic models obtained from this method are being used to simulate stenting procedures, and to investigate the hemodynamic variables in coronary bifurcations in the works submitted in [Morlachi2012, Chiastra2012]. Additionally, another preliminary work has been done to reconstruct the coronary tree from rotational angiography, and published in [Cardenes2012ISBI].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone metastases are the result of a primary cancer invasion which spreads into the bone marrow through the lymphogenous or hematogenous pathways. Bone metastases are a common complication of cancer.The primary cancers that most frequently metastasize to bone are breast and prostate cancer (65 - 75 %) amongst many others (thyroid 42 %, lung 36 % or kidney 35 %) (Suva et al., 2011). Although the exact incidence of bone metastases is unknown given its dependence on the type of primary cancer, it is estimated that 350,000 people die of bone metastases annually in the United States.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ewing sarcoma or primitive neuroectodermal tumor (PNET) of bone is the second most common pediatric malignant bone tumor. The median age at diagnosis is 15 years and there is a male predilection of 1.5/1. The authors present the case of a 14-year-old boy with Ewing sarcoma situated on the left ninth rib which was being investigated for respiratory tract infection. Pleurisy is the most common misdiagnosis. Our case illustrates the importance of recognizing exceptional features when interpreting FDG PET or scintigraphy to prevent the misinterpretation of metastases as other etiologies, such as infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phantoms that exhibit complex dielectric properties similar to low water content biological tissues over the electromagnetic spectrum of 2–3 GHz have been synthesized from carbon black powder, graphite powder and polyvinyl-acetate-based adhesive. The materials overcome various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the materials for various compositions of carbon black and graphite powder are studied. A combination of 50% polyvinylacetate- based adhesive, 20% carbon black powder and 30% graphite powder exhibits high absorption coefficient, which suggests another application of the material as good microwave absorber for interior lining of tomographic chamber in microwave imaging. Cavity perturbation technique is adopted to study the dielectric properties of the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to explore the perception of the legal authorities regarding different report types and visualization techniques for post-mortem radiological findings.