1000 resultados para MECHANOCHEMISTRY REACTION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method in situ chlorinating-graft copolymerization (ISCGC) of grafting maleic anhydride (MAH) on isotactic polypropylene (iPP) in gas-solid phase was investigated in this paper. Chlorine (Cl-2) was used as initiator, chlorinating agent and termination agent at the same time during the reaction. The iPP was chlorinated as well as grafted with MAH in the reaction process. The product with chlorine and MAH in the same molecule was named as PP-cg-MAH. Existence of PP-cg-MAH was identified by Fourier transform infrared. Thermal behavior and crystallinity of PP-cg-MAH were analyzed by differential scanning calorimetry, X-ray diffraction and polarizing microscope. Influencing factors for the value of graft degree were also discussed. Compared with conventional peroxide initiated graft method, ISCGC revealed higher MAH graft efficiency (33%), and particularly alleviated degradation of iPP. iPP could be grafted successfully and without changing physical properties dramatically through this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions in (molecular) organic crystalline solids have been shown to be important for exerting control that is unattainable over chemical transformations in solution. Such control has also been achieved for reactions within metal– organic cages. In these examples, the reactants are already in place within the crystals following the original crystal growth. The post-synthetic modification of metal–organic frameworks (MOFs and indeed reactions and catalysis within MOFs have been recently demonstrated; in these cases the reactants enter the crystals through permanent channels. Another growing area of interest within molecular solid-state chemistry is synthesis by mechanical co-grinding of solid reactants—often referred to as mechanochemistry. Finally, in a small number of reported examples, molecules also have been shown to enter nonporous crystals directly from the gas or vapor phase, but in only a few of these examples does a change in covalent bonding result, which indicates that a reaction occurs within the nonporous crystals. It is this latter type of highly uncommon reaction that is the focus of the present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles.

While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.

We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity.

In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines the decision by Australian Real Estate Trusts (A-REITs) to issue seasoned equity offerings from 2000 - 2008 and stock market reaction to the offerings using panel data and event study methodologies, respectively. The global financial crisis has resulted in freezing of the Australian bond markets, with several A-REITs left with seasoned equity issuance and asset sales as the only viable modes of raising additional capital. The findings review that leverage and operating risk are negative significant determinants of seasoned equity offerings; profitability and growth opportunities are positive significant determinants. Of the structure and type of properties held by the A-REIT, only stapled management structure and international operations are significant determinants. Type of properties held by A-REITs show inconsistent results. Similar to previous studies of seasoned equity offerings, we find a significant negative abnormal return associated with their announcement and no evidence of excessive leakage of information. Cross-sectional regressions show that the issued amount raised and leverage are significant factors affecting abnormal returns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technological environment in which contemporary small and medium-sized enterprises (SMEs) operate can only be described as dynamic. The seemingly exponential nature of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the small and medium-sized enterprise a complex and challenging operational context. The development of infrastructures capable of supporting the Wireless Application Protocol (WAP)and associated 'wireless' applications represents the latest generation of technological innovation with potential appeal to SMEs and end-users alike. The primary aim of this research was to understand the mobile data technology needs of SMEs in a regional setting. The research was especially concerned with perceived needs across three market segments; non-adopters of new technology, partial-adopters of new technology and full-adopters of new technology. Working with an industry partner, focus groups were conducted with each of these segments with the discussions focused on the use of the latest WP products and services. Some of the results are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-report measure of the emotional and behavioural reactions to intrusive thoughts was developed. The paper presents data that confirm the stability, reliability and validity of the new 7-item measure. Emotional and behavioural reactions to intrusions emerged as separate factors on the Emotional and Behavioural Reactions to Intrusions Questionnaire (EBRIQ), a finding confirmed by an independent stress study. Test retest reliability over 30-70 days was good. Expected relationships with other constructs were significant. Stronger negative responses to intrusions were associated with lower mindfulness scores and higher ratings of experiential avoidance, thought suppression and intensity and frequency of craving. The EBRIQ will help explore differences in reactions to intrusive thoughts in clinical and non clinical populations, and across different emotional and behavioural states. It will also be useful in assessing the effects of therapeutic approaches such as mindfulness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce the Reaction Wheel Pendulum, a novel mechanical system consisting of a physical pendulum with a rotating bob. This system has several attractive features both from a pedagogical standpoint and from a research standpoint. From a pedagogical standpoint, the dynamics are the simplest among the various pendulum experiments available so that the system can be introduced to students earlier in their education. At the same time, the system is nonlinear and underactuated so that it can be used as a benchmark experiment to study recent advanced methodologies in nonlinear control, such as feedback linearization, passivity methods, backstepping and hybrid control. In this paper we discuss two control approaches for the problems of swingup and balance, namely, feedback linearization and passivity based control. We first show that the system is locally feedback linearizable by a local diffeomorphism in state space and nonlinear feedback. We compare the feedback linearization control with a linear pole-placement control for the problem of balancing the pendulum about the inverted position. For the swingup problem we discuss an energy approach based on collocated partial feedback linearization, and passivity of the resulting zero dynamics. A hybrid/switching control strategy is used to switch between the swingup and the balance control. Experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion process-based mechanisms motivated by applications from cell biology. Previous investigations that focussed on relaxing the independence assumption have been limited to studying initially-uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterised by moving fronts. Here we propose generalised methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.