977 resultados para MEAN-FIELD THEORY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the mean-field theory for the spinless Bose-Hubbard model to account for the different types of superfluid phases that can arise in the spin-1 case. In particular, our mean-field theory can distinguish polar and ferromagnetic superfluids, Mott insulator, that arise at integer fillings at zero temperature, and normal Bose liquids into which the Mott insulators evolve at finite temperatures. We find, in contrast to the spinless case, that several of the superfluid-Mott insulator transitions are of first order at finite temperatures. Our systematic study yields rich phase diagrams that include first-order and second-order transitions and a variety of tricritical points. We discuss the possibility of realizing such phase diagrams in experimental systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this potential, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator (MI), density-wave (DW), and supersolid (SS) phases in the plane of the chemical potential mu and on-site repulsion U; we present phase diagrams for representative values of V, the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI, DW, and SS phases. We explore the implications of our study for experiments on cold-atom dipolar condensates in optical lattices in a confining potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extensive study of Mott insulator (MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with harmonic traps. For this we apply the inhomogeneous mean-field theory developed by Sheshadri et al. Phys. Rev. Lett. 75, 4075 (1995)]. Our results for the BH model with one type of spinless bosons agree quantitatively with quantum Monte Carlo simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also extend our inhomogeneous mean-field theory to study BH models with harmonic traps and (a) two species of bosons or (b) spin-1 bosons. With two species of bosons, we obtain rich phase diagrams with a variety of SF and MI phases and associated shells when we include a quadratic confining potential. For the spin-1 BH model, we show, in a representative case, that the system can display alternating shells of polar SF and MI phases, and we make interesting predictions for experiments in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a method for performing one-loop calculations in finite systems that is based on using the WKB approximation for the high energy states. This approximation allows us to absorb all the counterterms analytically and thereby avoids the need for extreme numerical precision that was required by previous methods. In addition, the local approximation makes this method well suited for self-consistent calculations. We then discuss the application of relativistic mean field methods to the atomic nucleus. Self-consistent, one loop calculations in the Walecka model are performed and the role of the vacuum in this model is analyzed. This model predicts that vacuum polarization effects are responsible for up to five percent of the local nucleon density. Within this framework the possible role of strangeness degrees of freedom is studied. We find that strangeness polarization can increase the kaon-nucleus scattering cross section by ten percent. By introducing a cutoff into the model, the dependence of the model on short-distance physics, where its validity is doubtful, is calculated. The model is very sensitive to cutoffs around one GeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground state properties of the Pb isotopic are studied by using the axially deformed relativistic mean field (RMF) calculation with the parameter set TM1. The pairing correlation is treated by the BCS method and the isospin dependent pairing force is used. The 'blocking' method is used to deal with unpaired nucleons. The theoretical results show that the relativistic mean field theory with non-linear self-interactions of mesons provides a good description of the binding energy and neutron separation energy. The present paper focus on the physical mechanism of the Pb isotope shifts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition -- the classification of handwritten digits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.