878 resultados para MDF panels
Resumo:
MDF panels from eucalyptus wood fibers were manufactured in laboratory and industrial production and had their apparent density profile determined by X-ray densitometry. The MDF panels apparent density parameters (maximum density of the superior and inferior faces; medium and minimum density) were determined and compared. The results indicated that the density values of the MDF panels made in the laboratory and in industrial line did not show significant statistical differences, indicating the similarities in the pressing phase of the fibers of both kinds. However, for MDF panels of laboratory and production line, the values of maximum, mean and minimum densities showed statistically significant correlations. The determination of the density profile for MDF panels by X-ray densitometry is important for the evaluation of pressing phase and other variables of the industrial process of production, as well for the determination of the technological properties.
Resumo:
MDF panels of Eucalyptus grandis wood fibers were made in either experimentally in a laboratory or on an industrial production line. In order to analyze the influence of the production condition, the anatomical, physical and mechanical properties of the panels were determined. The wood refining induced the transversal rupture of the transversal fiber wall. The MDF panels obtained from the industrial production line presented less swelling in thickness and absorption values and improved mechanical properties in the requirements of bending strength, module of elasticity and surface resistance. For laboratory MDF panels, it was possible to verify a statistically significant correlation between bending strength and module of elasticity, medium density and internal bond and swelling in thickness and absorption. This tendency was also true for the MDF panels obtained in real conditions of production, however without statistical significance. By comparing the quality properties of MDF panels produced in the laboratory with those obtained in real conditions of production, it was sought to standardize the established variables for obtaining panels on a small scale, as well to make possible the safe transfer and divulgation of information obtained in the laboratory.
Resumo:
A utilização da madeira de eucalipto na confecção de painéis MDF é recente, tornando-se necessário entender as modificações em sua estrutura anatômica durante as etapas do processo industrial, notadamente no desfibramento dos cavacos. Com esse objetivo, neste estudo foram aplicadas três condições diferenciadas de desfibramento dos cavacos, alterando-se (i) o tempo de aquecimento, (ii) as pressões de digestão e de desfibramento e (iii) a energia específica de desfibramento, sendo avaliadas as características anatômicas dos componentes celulares da madeira. O aumento da intensidade de refino dos cavacos de madeira reduziu o comprimento médio das fibras e aumentou o porcentual de fibras quebradas, corroborando as imagens de microscopia eletrônica de varredura, além da diminuição do número dos vasos e de células de parênquima. Essa condição de desfibramento mais intensa promoveu, também, um característico escurecimento da coloração da polpa composta pelos elementos celulares da madeira. A aplicação de variáveis de desfibramento mais brandas aumentou a presença de feixes de fibras e do número de vasos e de parênquima, resultando em uma polpa de coloração mais clara. As alterações das características morfológicas dos componentes celulares da madeira dos cavacos de eucalipto, após o tratamento de desfibramento, relacionaram-se com as etapas do processo operacional e com a qualidade tecnológica dos painéis de fibras MDF.
Resumo:
Thermosetting resins are very important in the production of MDF panels. They act as an adhesive in the process of compacting and consolidating the fiberboard. Thermoset resins commonly used in this process are based resin urea formaldehyde (UF) and melamine formaldehyde (MF). The first has a higher demand due to its low cost and good performance in meeting the specifications and standards. The second has a high cost compared to MF resin, but adds greater value to the MDF panel, because it gives greater moisture resistance. The process of manufacture of MDF boards was briefly presented in this study to facilitate the understanding of the work. Samples of thermosetting resins (UF and MF) were subjected to physical-chemical seeking to relate these results to the technological performance presented by their respective samples of MDF boards. Two other samples of MDF panels were subjected to physical and mechanical tests. Results were analyzed and related to the award of their respective thermoset resin. Instruments like Dahmos Trend Manager ® and Grecon Dax 5000 and TG - DSC analysis were used in this study to assist in the analysis of the results. It was observed that the results of the analysis of thermosetting resins were within the specified. Such resins do not directly influence the technological tests provided by the MDF panels, but it has been found that the process variables such as humidity and fiber production rate interfere with the performance of the resin accelerating the reaction and therefore their influence on the physical-mechanical properties of the panels MDF. Samples of MDF panels with UF and MF met all the specifications required by the Brazilian standard with regard to the technological quality. The increased demand for UF resin market is justified by the service specifications...
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Medium density fiberboard (MDF) is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC) bagasse to Eucalyptus wood in MDF panels using near infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least square (PLS) regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96) between the NIR-predicted and Lab-determined values and a low standard error of prediction (similar to 1.5%) in the cross-validations. A key role of resins (adhesives), cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.
Resumo:
The objective of this study was to evaluate the density, density profile, water swelling and absorption, modulus of elasticity and rupture from static bending, and tensile strength of experimental medium-density fiberboards manufactured using Dendrocalamus giganteus (Munro bamboo). The fiber production was carried out through the chemo-thermo-mechanical pulping process with four different conditions. The panels were made with 10% urea formaldehyde resin based on dry weight of the fibers, 2.5% of a catalyzer (ammonium sulfate) and 2% paraffin. The results indicate that treatments with the highest alkali (NaOH) percentage, time and splinter heating temperature improved the physical properties of the panels. The root-fiber interface was evaluated through scanning electron microscopy in fracture zones, which revealed fibers with thick, inflexible walls. The panels' mechanical properties were affected due to the fiber wall characteristics and interaction with resin. Giant bamboo fiber has potential for MDF production, but other studies should be carried out.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Increasingly, the furniture market is competitive. The construction industry presents itself in growth, mainly due to the lines of existing incentives and tax credits established by the government, assisting the impulse to purchase real estate, building materials and furniture. Factors that promote and strengthen the sector's growth. With high demand from the furniture market, demand for higher quality and increasing technological advances, research is often undertaken in search of solutions for process improvement and product features, focusing on the production of materials less harmful to the environment, provision of raw press to lower cost, improve the production process and product development of cost-effective. This research focuses on the comparative study between two materials widely used in furniture manufacturing. MDF (Medium Density Fiberboard) and MDP (Medium Density Particleboard). The subject provides the focus in furniture production, presenting and comparing data collected from three companies producing panels between physical and mechanical characteristics of the materials, also presenting some of the main factors of influence on the quality of the panels, their features and applications on mobile. The study shows the high potential of using the MDP (Medium Density Particleboard) in furniture designs, as well as MDF (Medium Density Particleboard), favoring the final terms of the project , resulting in better utilization of each material , avoiding waste and increase unnecessary cost . Currently, several projects are developed in MDP and MDF furniture, where there is no relevance to their characteristics regarding their limitations. Many of these furnishings are designed without a specific study of the best use and positioning of each material, with better utilization , favoring collateral design , especially furniture designed exclusively for each environment . The lack of technical ...
Resumo:
The premature failure of a large agglomeration machine used for the annual production of 360,000 m(3) of eucalypt fiber panels was investigated to identify the nucleation and growth mechanisms of cracking in PH stainless steel belts (126 m x 2.9 m x 3.0 mm). These belts are used to compress a cushion composed of eucalyptus fibers and glue, being the pressure transmitted from the pistons by the action of numerous case-hardening steel rolls. Examination of the belt working interfaces (belt/rolls and belt/eucalypt fibers) indicated that the main cracking was nucleated on the belt/roll interface and that there is a clear relationship between the crack nucleation and the presence of superficial irregularities, which were observed on the belt/roll working surface. Used rolls showed the presence of perimetric wear marks and 2 mu m silicon-rich encrusted particles (identified as silicon carbide). Lubricant residues contained the presence of helicoidal wires, which were originated by the release of the stainless steel cleaning brush bristles, and 15 mu m diameter metallic particles, which were generated by material detachment of the belt. The presence of foreign particles on the tribological interface contributed to an increase of the shear stresses at the surfaces and, consequently, the number of the contact fatigue crack nucleation sites in the belt/roll tribo-interface. The cracking was originated on the belt/roll interface of the stainless steel belt by a mixed rolling/slip contact fatigue mechanism, which promoted spalling and further nucleation and growth of conventional fatigue cracks. Finally, the system lubrication efficiency and the cleaning procedure should be optimised in order to increase the life expectancy of the belt. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In smart grids context, the distributed generation units based in renewable resources, play an important rule. The photovoltaic solar units are a technology in evolution and their prices decrease significantly in recent years due to the high penetration of this technology in the low voltage and medium voltage networks supported by governmental policies and incentives. This paper proposes a methodology to determine the maximum penetration of photovoltaic units in a distribution network. The paper presents a case study, with four different scenarios, that considers a 32-bus medium voltage distribution network and the inclusion storage units.
Resumo:
Sera from 472 Brazilian subjects, confirmed to be either positive or negative for HIV antibodies and comprising the total clinical spectrum of HIV infection, were utilized in the evaluation of six commercially available enzyme-linked immunosorbent assays (ELISA), as well as of four alternative assays, namely indirect immunofluorescence (IIF), passive hemagglutination (PHA), dot blot and Karpas AIDS cell test. The sensitivities ranged from 100% (Abbott and Roche ELISA) to 84.2% (PHA) and the specificities ranged from 99.3% (IIF) to 80.2% (PHA). The sensitivity and specificity of the PHA and the sensitivity of the Karpas cell test were significantly lower than those of the other tests. Although the IFF and dot blot had good sensitivities and specificities, the six ELISA were more attractive than those tests when other parameters such as ease of reading and duration of assay were considered.
Resumo:
The optimal design of laminated sandwich panels with viscoelastic core is addressed in this paper, with the objective of simultaneously minimizing weight and material cost and maximizing modal damping. The design variables are the number of layers in the laminated sandwich panel, the layer constituent materials and orientation angles and the viscoelastic layer thickness. The problem is solved using the Direct MultiSearch (DMS) solver for multiobjective optimization problems which does not use any derivatives of the objective functions. A finite element model for sandwich plates with transversely compressible viscoelastic core and anisotropic laminated face layers is used. Trade-off Pareto optimal fronts are obtained and the results are analyzed and discussed.
Resumo:
Os Sistemas de Gestão Técnica Centralizada (SGTC) assumem-se como essenciais nos grandes edifícios, já que permitem monitorizar, controlar, comandar e gerir, de forma facilitada, integrada e otimizada, as várias instalações existentes no edifício. O estado da arte de um SGTC baseia-se numa arquitetura distribuída, com recurso a Quadros de Gestão Técnica (QGT) que incluem Automation Servers - equipamentos nativos nos protocolos de comunicação mais comummente utilizados neste âmbito, incorporadores de funcionalidades e programações pré-definidas, e que ficarão responsáveis por integrar na sua área de influência, um conjunto de pontos de SGTC, definidos em projeto. Numa nova filosofia de instalação, integração e comunicação facilitada entre dispositivos que nos quadros elétricos geram dados relevantes para o utilizador e desencadeiam ações úteis na gestão de uma instalação, surge o novo conceito no mercado de Smart Panels, da Schneider Electric. Este sistema baseia-se numa ampla e diversa gama de possibilidades de medição e monitorização energética e da própria aparelhagem, com um sistema de comunicação com o sistema de gestão e controlo da instalação integrado no próprio quadro, dispensando assim a necessidade de um sistema externo (QGT), de recolha, comunicação e processamento de informação. Após o estudo descritivo teórico dos vários tópicos, questões e considerações relacionadas com os SGTC, os Smart Panels e a sua integração, o projeto e estudo comparativo do SGTC sem e com a integração de Smart Panels num grande centro comercial, permitiu concluir que a integração de Smart Panels num SGTC pode conferir vantagens no que diz respeito à implificação do projeto, da instalação, do comissionamento, programação, e da própria exploração da instalação elétrica, traduzindo-se numa redução dos custos normalmente elevados inerentes à mão de obra associada a todos estes processos.