984 resultados para MC-ICP-MS
Resumo:
186 p. : il.
Resumo:
Based on previous studies, boron can be separated from aqueous samples with Amberlite IRA-743 resin. Experiments on the elute temperature, elute volume and the dynamic resin exchange capacity have been performed in this study. Results show that the dynamic exchange capacity of the resin is 4.2mg B/g and at room temperature, boron fixed on the resin within this capacity level can be extracted quantitatively by using 5ml 2%HNO3. A new procedure has been developed for the measurement of boron isotope ratios in water samples using a Neptune MC-ICP-MS, after resolving the memory effect, which is a key problem, and investigating the impacts of mass bias and Si matrix effect. Using this method, it usually takes 20 min to perform one measurement on 0.1ppm boron solution with a precision of 0.23‰ (SD). If the relative deviation between a sample and the standard is large, the washout time needs to be doubled to achieve a higher precision. δ11B values of water samples from Yangbajing geothermal field vary from -10.53 to -9.13‰. Owing to the large difference B concentration and the small B isotope difference between deep geothermal water and surface water, B isotope ratios of the shallow geothermal fluids are dominated by the deep end member rather than the shallower one in the mixing process. As a consequence, δ11B-B relation is indicative basically of a dilution process. Vapor-liquid separation and calcite scaling also greatly influence B isotope fractionation. δ11B values of water samples from Dagejia geothermal field are from -15.98‰ to -11.67‰. Boron in Changma River near the field has two sources, freshwater lakes (Dajiamang Lake and Canke Lake) and geothermal waters. Finally, a preliminary discussion is included on boron geochemical characteristics of the salt lakes in Shuanghu area and other geothermal fields, to provide information for future studies on boron isotope geochemistry of geothermal systems and salt lakes in Tibet.
Resumo:
Over past ten years, a great development has been made in the Lu-Hf isotopic system with the advent of MC-ICP-MS. Based on a comprehensive review of available references in the related field, a novel analytical protocol of three exchange chromatographies after one mixed acid attacking geological samples was developed in this work, which not only avoids common multiple sample treatments for natural inhomegeneous samples, but also is useful for Rb-Sr, Sm-Nd and Lu-Hf isotopic system simultaneously, especially for the garnet- and apatite-bearing rocks for the Sm-Nd and Lu-Hf geochronology. An analytical procedure for the Lu and Hf concentration in geological samples determined by by ID-MC-ICP-MS was detailedly investigated. The Hf yield is > 90 % and total procedural blank is less than. 50 pg for Hf and 10 pg for Lu, respectively. The developed method was successfully applied to the determination of Lu and Hf concentrations for USGS geological materials. A one-column procedure for Hf purification in geological samples using common anion exchange chromatography and its isotopic analyses by MC-ICP-MS were also established. Multiple analyses of Standard Reference Materials demonstrate that this method was simple, time-saving, cheap and efficient, especially suitable for the Hf isotopic compositions of young samples. Finally, the measurements of Sr and Nd isotopic compositions using Neptune MC-ICP-MS were described briefly, which indicates that Neptune MC-ICP-MS can precisely measure Sr and Nd isotopic compositions as the TIMS does, even more efficient and less time-consuming than the TIMS method. The Hf isotopic characteristics of typical volcanic rocks (Cenozoic Changle-Linqu basalts, Mesozoic Fangcheng basalts, Mesozoic Jianguo basalts, Mesozoic Wulahada high-Mg andesite, Cenozoic Fanshi, Zuoquan and Xiyang-Pingding basalts of the Taihang Mountains, Paleozoic diamondiferous Menyin and Fuxian Kimblites) from the North China Craton were firstly studied in this work. Coupled with Nd isotopic compositions, it shows that the Hf isotopes could be a better tracer for mantle sources than the Nd isotopes. Individual kimberlite fields from both the Mengyin and Fuxian regions have quite uniform Hf isotopic compositions, similar to the situation for the Nd isotopes.
Resumo:
一定元素的同位素组成被认为是该元素特有的“指纹”,同位素组成测量是地球化学、生命科学、环境化学、地质科学和核科学等领域重要的研究手段。利用同位素技术开展生命过程,地球系统中的物理、化学、生物过程及其资源、环境与灾害效应,资源勘探,污染物溯源等方面的研究,既是该技术的前沿研究主题,也使相关领域的研究更加“精细量化”,从而在新的科学纵深揭示出更加清晰的规律。 1992年多接收电感耦合等离子体质谱仪(MC-ICP-MS)的问世,为同位素分析提供了一种强有力的技术手段,与传统的热电离同位素质谱相比,MC-ICP-MS具有测量速度快、操作简便、灵敏度高等优点。而且,由于等离子体源产生的高温,在理论上能测量所有的金属元素和一些非金属元素,并已很好地解决了一些高电离电位元素同位素测量的难题(如Se, Zn, Hf等),用MC-ICP-MS准确、精密测量各种元素同位素组成的方法正在逐渐得到发展和完善。目前,MC-ICP-MS比较成熟的方法主要是针对核和地质科学研究中应用较多的U, Pb, Sm, Nd, Sr, Hf, B, Li等,在硒和锌同位素测量方法学的研究还相对较少(尤其是硒),对一些测量中受各种干扰较为严重的、原子量小于80 的元素同位素的测量技术还有待进一步深入探索和研究。锌、硒元素不仅与人类健康息息相关,而且随着质谱分析技术的发展,使其在环境地球化学、生命科学等领域有着广泛的应用前景。准确测量生物、食品、环境、地质等样品中的锌、硒元素含量、各种形态及其同位素组成受到越来越多的关注。锌、硒同位素准确测量的方法学研究,不仅可以广泛应用于各相关领域,也为锌和硒同位素基、标准物质研制奠定技术基础,从而为锌、硒元素含量和同位素测量提供量值溯源保障。 本工作针对锌和硒元素同位素组成以及生物、环境等样品中成分量准确测量存在的问题,通过使用六极杆碰撞室MC-ICP-MS进行准确测量锌和硒元素同位素的技术研究,结合在化学计量研究中的长期实践及相关文献,从方法学角度和应用方面得出以下结论: 1.MC-ICP-MS仪器测量主要参数,如炬管轴向位置、载气流量、碰撞气流量、仪器稳定性等对测量结果影响很大,要获得高精度的测量结果,须优化和固定参数设置,保持仪器的稳定状态。在六极杆碰撞室MC-ICP-MS测量锌同位素时,高纯氩气碰撞气模式是较为理想的模式,64Zn/66Zn、67Zn/66Zn、68Zn/66Zn同位素丰度比测量精度达到0.002-0.008%,70Zn/66Zn 测量精度达到0.01%;在高纯氢气和氩气碰撞气按一定比例混合的模式下, 76Se/80Se、77Se/80Se、78Se/80Se、82Se/80Se同位素丰度比测量精度达到0.004-0.005%。 2.采用高纯、高浓缩64Zn和66Zn配制了8个校正样品 (64Zn/66Zn:0.6-2.2);用高纯、高浓缩同位素76Se和82Se配制了16个校正样品(76Se/82Se: 0.05-11.8),用这些样品分别测量并计算了仪器系统误差校正系数K,这些校正样品的K64/66 和 K76/82的相对标准偏差分别为0.034%和0.03%,均在仪器的测量不确定度范围内,说明在校正样品同位素变化范围内,仪器测量同位素丰度比的校正系数没有发生明显变化。 3.在硒同位素丰度比值测量中,氢气碰撞气的使用是SeH产生的重要原因之一,Ar/H在2-7之间都可以满足硒同位素比值测量的要求,即保证较高的硒灵敏度、较小的SeH生成比例、稳定的同位素比值测量结果。本工作建立了SeH的校正计算公式,在对测量结果的质量歧视进行校正时,77Se和78Se的校正更为复杂,因为它们除自身产生的SeH外,还分别受到了来自76SeH和77SeH的影响,故校正质量偏移时应首先对SeH进行校正。对于不同的SeH生成比例,经过校正后,硒的同位素丰度比校正值是一致的,并不受SeH生成比例变化影响。 4.通过对IDMS过程中的关键技术研究,明确了如何正确使用该方法以获得准确测量结果。IDMS方法在测量步骤中引入的不确定度影响因素相对于其它化学分析方法较少,并且可以被明确地表达出来,测量结果可直接溯源到国际单位,因此,该方法对化学计量学研究具有十分重要的意义。 5.建立了适用于ICP-MS测量血清、大豆粉、金枪鱼等多种复杂基体中锌和硒元素的样品前处理方法,建立了锌和硒的ICP-IDMS测量方法。将建立的方法应用于人血清标准物质研制、国家计量院之间的国际比对和合作研究中,取得的优异成绩验证了所建方法的可靠性和可比性。IDMS方法在样品前处理上不怕样品损失和高精度同位素丰度比测量的优点,使其在复杂基体中硒、锌的准确测量方面较其它分析方法具有独特的优势,可在生物、临床、环境、食品等方面的分析研究中广泛应用。
Resumo:
自然界锂同位素分馏强烈,这使得它在很多方面都得到了应用,如地球化学、天体化学和核工业等。所有这些领域都要求精确的测定6Li/7Li的比值。但由于锂是微量元素,而且在测试过程中还存在明显的干扰,因此在进行锂同位素比值测定之前必须对样品进行分离和富集。本文以锂元素标准样品和钾、钠、钙、镁元素标准样品的混合溶液为主要研究对象,采用阳离子交换树脂AG-50W-X8来分离富集锂,探索在不同淋洗介质条件下锂分离纯化的最佳介质条件。初步得出以下结论: 1、本次研究建立了相对简单、高效的锂同位素分离方法。用单一的柱子分离、提纯样品锂;用低浓度的盐酸(0.15M HCl)直接作为淋洗介质,操作过程简单。 2、对锂同位素比值测定产生潜在影响因素,如基体效应、回收率、流程空白等进行了实验研究,证实这些影响因素对于本次研究所建立的方法来说都是可以忽略不计的。 3、用MC-ICP-MS测定样品的锂同位素组成,分析结果的准确度和精度与现阶段所报道数据相同。测定海水的锂同位素组成(+31.6±1.0‰,2σ)与Tomoscak 等(+31.8±1.9‰,2σ)的分析值相近。 4、该方法也适用于低含量的样品。我们分离并测定了不同类型样品的锂同位素组成,样品锂含量在0.064µg/g和132µg/g之间,说明该方法也同样适用于低含量地质样品的分析测定。
Resumo:
LA-MC-ICP-MS U-Pb zircon dating was performed on syntectonic, early post-collisional granitic and associated mafic rocks that are intrusive in the Brusque Metamorphic Complex and in the Florianopolis Batholith, major tectonic domains separated by the Neoproterozoic Major Gercino Shear Zone (MGSZ) in south Brazil. The inferred ages of magmatic crystallization are consistent with field relationships, and show that the syntectonic granites from both domains are similar, with ages around 630-620 Ma for high-K calc-alkaline metaluminous granites and ca. 610 Ma for slightly peraluminous granites. Although ca. 650 Ma inherited zircon components are identified in granites from both domains, important contrasts on the crustal architecture in each domain are revealed by the patterns of zircon inheritance, indicating different crustal sources for the granites in each domain. The granites from the southern domain (Floriandpolis Batholith) have essentially Neoproterozoic (650-700 Ma and 900-950 Ma) inheritance; with a single 2.0-2.2 Ga inherited age obtained in the peraluminous Mariscal Granite. In the northern Brusque Metamorphic Complex, the metaluminous Rio Pequeno Granite and associated mafic rocks have scarce inherited cores with ages around 1.65 Ga, whereas the slightly peraluminous Serra dos Macacos Granite has abundant Paleoproterozoic (1.8-2.2 Ga) and Archean (2.9-3.4 Ga) inherited zircons. Our results are consistent with the hypothesis that the MGSZ separates domains with distinct geologic evolution; however, the contemporaneity of 630-610 Ma granitic magmatism with similar structural and geochemical patterns on both sides of this major shear zone indicates that these domains were already part of a single continental mass at 630 Ma, reinforcing the post-collisional character of these granites. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.
Resumo:
The development and improvement of MC-ICP-MS instruments have fueled the growth of Lu–Hf geochronology over the last two decades, but some limitations remain. Here, we present improvements in chemical separation and mass spectrometry that allow accurate and precise measurements of 176Hf/177Hf and 176Lu/177Hf in high-Lu/Hf samples (e.g., garnet and apatite), as well as for samples containing sub-nanogram quantities of Hf. When such samples are spiked, correcting for the isobaric interference of 176Lu on 176Hf is not always possible if the separation of Lu and Hf is insufficient. To improve the purification of Hf, the high field strength elements (HFSE, including Hf) are first separated from the rare earth elements (REE, including Lu) on a first-stage cation column modified after Patchett and Tatsumoto (Contrib. Mineral. Petrol., 1980, 75, 263–267). Hafnium is further purified on an Ln-Spec column adapted from the procedures of Münker et al. (Geochem., Geophys., Geosyst., 2001, DOI: 10.1029/2001gc000183) and Wimpenny et al. (Anal. Chem., 2013, 85, 11258–11264) typically resulting in Lu/Hf < 0.0001, Zr/Hf < 1, and Ti/Hf < 0.1. In addition, Sm–Nd and Rb–Sr separations can easily be added to the described two-stage ion-exchange procedure for Lu–Hf. The isotopic compositions are measured on a Thermo Scientific Neptune Plus MC-ICP-MS equipped with three 1012 Ω resistors. Multiple 176Hf/177Hf measurements of international reference rocks yield a precision of 5–20 ppm for solutions containing 40 ppb of Hf, and 50–180 ppm for 1 ppb solutions (=0.5 ng sample Hf 0.5 in ml). The routine analysis of sub-ng amounts of Hf will facilitate Lu–Hf dating of low-concentration samples.
Resumo:
Boron and Li are light, incompatible elements that preferentially partition into the liquid phase, whether melt or aqueous fluid, and thus are useful for tracking fluid-related processes in rocks. Most of the Li isotopic data presently available on subduction-related rocks are from whole-rock analyses; and the B isotopic analyses of subduction material have been carried out either on whole-rocks or in-situ on an accessory phase, such as tourmaline. The new method presented here couples an ESI New Wave UP-193-FX ArF* (193 nm) excimer laser-ablation microscope with a Neptune Plus (Thermo Scientific) MC-ICP-MS aiming to measure both Li and B isotopes in situ with good spatial resolution (metamorphic minerals are commonly chemically zoned, and whole-rock analyses lose this detail). The data thus obtained are compared with SIMS analyses on the same mineral samples for B, and with MC-ICP-MS analyses on whole-rock or mineral separates from the same sample for Li. Additionally, data acquired on tourmaline standards were compared to SIMS values. The results show that for B concentrations above 5 μg/g, the data obtained by LA-MC-ICP-MS and by SIMS are identical within error, for mica (phengitic muscovite), pyroxene (jadeite), serpentine (antigorite), and tourmaline. For Li concentrations above 10 μg/g, the data obtained by LA-MC-ICP-MS and by MC-ICP-MS are also identical, within error, for mica (phengitic muscovite), and pyroxene (jadeite). However, analyses of tourmaline standards have shown significant differences with reference values, so LA-MC-ICP-MS does not yet appear to be an appropriate method to analyze Li isotopes in tourmalines. Thus, LA-MC-ICP-MS is a suitable method to measure Li and B isotopes with good spatial resolution in major rock-forming silicates from subduction-related rocks where concentrations exceed 10 μg/g and 5 μg/g, respectively, with an error on individual measurements equal to or less than previously used methods, but obtainable in a significantly shorter amount of time. The external reproducibility is ± 2.88 to 3.31 ‰ for B and ± 1.50 to 1.75 for Li, which is lower than or equal to the variations encountered within a given chemically zoned sample (up to 10 ‰ of variation within a given natural sample).