995 resultados para MAXIMUM-LIKELIHOOD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing (OFDM) systems are more sensitive to carrier frequency offset (CFO) compared to the conventional single carrier systems. CFO destroys the orthogonality among subcarriers, resulting in inter-carrier interference (ICI) and degrading system performance. To mitigate the effect of the CFO, it has to be estimated and compensated before the demodulation. The CFO can be divided into an integer part and a fractional part. In this paper, we investigate a maximum-likelihood estimator (MLE) for estimating the integer part of the CFO in OFDM systems, which requires only one OFDM block as the pilot symbols. To reduce the computational complexity of the MLE and improve the bandwidth efficiency, a suboptimum estimator (Sub MLE) is studied. Based on the hypothesis testing method, a threshold Sub MLE (T-Sub MLE) is proposed to further reduce the computational complexity. The performance analysis of the proposed T-Sub MLE is obtained and the analytical results match the simulation results well. Numerical results show that the proposed estimators are effective and reliable in both additive white Gaussian noise (AWGN) and frequency-selective fading channels in OFDM systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we extend the earlier work of Freeland and McCabe [Journal of time Series Analysis (2004) Vol. 25, pp. 701–722] and develop a general framework for maximum likelihood (ML) analysis of higher-order integer-valued autoregressive processes. Our exposition includes the case where the innovation sequence has a Poisson distribution and the thinning is binomial. A recursive representation of the transition probability of the model is proposed. Based on this transition probability, we derive expressions for the score function and the Fisher information matrix, which form the basis for ML estimation and inference. Similar to the results in Freeland and McCabe (2004), we show that the score function and the Fisher information matrix can be neatly represented as conditional expectations. Using the INAR(2) speci?cation with binomial thinning and Poisson innovations, we examine both the asymptotic e?ciency and ?nite sample properties of the ML estimator in relation to the widely used conditional least
squares (CLS) and Yule–Walker (YW) estimators. We conclude that, if the Poisson assumption can be justi?ed, there are substantial gains to be had from using ML especially when the thinning parameters are large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrigendum Vol. 30, Issue 2, 259, Article first published online: 15 MAR 2009 to correct the order of authors names: Bu R., K. Hadri, and B. McCabe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been generally accepted that the method of moments (MoM) variogram, which has been widely applied in soil science, requires about 100 sites at an appropriate interval apart to describe the variation adequately. This sample size is often larger than can be afforded for soil surveys of agricultural fields or contaminated sites. Furthermore, it might be a much larger sample size than is needed where the scale of variation is large. A possible alternative in such situations is the residual maximum likelihood (REML) variogram because fewer data appear to be required. The REML method is parametric and is considered reliable where there is trend in the data because it is based on generalized increments that filter trend out and only the covariance parameters are estimated. Previous research has suggested that fewer data are needed to compute a reliable variogram using a maximum likelihood approach such as REML, however, the results can vary according to the nature of the spatial variation. There remain issues to examine: how many fewer data can be used, how should the sampling sites be distributed over the site of interest, and how do different degrees of spatial variation affect the data requirements? The soil of four field sites of different size, physiography, parent material and soil type was sampled intensively, and MoM and REML variograms were calculated for clay content. The data were then sub-sampled to give different sample sizes and distributions of sites and the variograms were computed again. The model parameters for the sets of variograms for each site were used for cross-validation. Predictions based on REML variograms were generally more accurate than those from MoM variograms with fewer than 100 sampling sites. A sample size of around 50 sites at an appropriate distance apart, possibly determined from variograms of ancillary data, appears adequate to compute REML variograms for kriging soil properties for precision agriculture and contaminated sites. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.