997 resultados para MATTER DYNAMICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT) and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m) twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC), microbial biomass carbon (MBC), oxidizable fractions, and the carbon fractions fulvic acid (C FA), humic acid (C HA) and humin (C HUM) were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m) where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model was devised to describe simultaneously the grain masses of water and dry matter against thermal time during grain filling and maturation of winter wheat. The model accounted for a linear increase in water mass of duration anthesis-m(1) (end of rapid water assimilation phase) and rate a, followed by a more stable water mass until in,, after which water mass declined rapidly at rate e. Grain dry matter was described as a linear increase of rate bgf until a maximum size (maxgf) was attained at m(2).The model was fitted to plot data from weekly samples of grains taken from replicated field experiments investigating effects of grain position (apical or medial), fungicide (five contrasting treatments), sowing date (early or late), cultivar (Malacca or Shamrock) and season (2001/2002 and 2002/2003) on grain filling. The model accounted for between 83 and 99% of the variation ( 2) when fitted to data from individual plots, and between 97 and 99% when fitted to treatment means. Endosperm cell number of grains from early-sown plots in the first season were also counted. Differences in maxgf between grain positions and also between cultivars were mostly the result of effects on bgf and were empirically associated with water mass at nil. Fungicide application controlled S. tritici and powdery mildew infection, delayed flag leaf senescence, increased water mass at m(1) (wm(1)), and also increased m(2), bgf and maxgf. Fungicide effects on water mass were detected before fungicide effects on dry matter, but comparison of the effects of individual fungicide treatments showed no evidence that effects on wm(1), nor on endosperm cell numbers at about m(1), were required for fungicide effects on maxgf, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to investigate the impact of rising fCO2 on the build-up and decline of organic matter during coastal phytoplankton blooms. Five mesocosms (~38 m³ each) were deployed in the Baltic Sea during spring (2009) and enriched with CO2 to yield a gradient of 355-862 µatm. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. Changes in particulate and dissolved organic matter concentrations, including dissolved high-molecular weight (>1 kDa) combined carbohydrates, dissolved free and combined amino acids as well as transparent exopolymer particles (TEP), were monitored over 21 days together with bacterial abundance, and hydrolytic extracellular enzyme activities. Overall, organic matter followed well-known bloom dynamics in all CO2 treatments alike. At high fCO2, higher dPOC:dPON during bloom rise, and higher TEP concentrations during bloom peak, suggested preferential accumulation of carbon-rich components. TEP concentration at bloom peak was significantly related to subsequent sedimentation of particulate organic matter. Bacterial abundance increased during the bloom and was highest at high fCO2. We conclude that increasing fCO2 supports production and exudation of carbon-rich components, enhancing particle aggregation and settling, but also providing substrate and attachment sites for bacteria. More labile organic carbon and higher bacterial abundance can increase rates of oxygen consumption and may intensify the already high risk of oxygen depletion in coastal seas in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retention of sugarcane leaves and tops on the soil surface after harvesting has almost completely replaced pre- and post-harvest burning of crop residues in the Australian sugar industry. Since its introduction around 25 years ago, residue retention has increased soil organic matter to improve soil fertility as well as improve harvest flexibility and reduce erosion. However, in the wet tropics residue retention also poses potential problems of prolonged waterlogging, and late-season release of nitrogen which can reduce sugar content of the crop. The objective of this project is to examine the management of sugarcane residues in the wet tropics using a systems approach. Subsidiary objectives are (a) to improve understanding of nitrogen cycling in Australian sugarcane soils in the wet tropics, and (b) to identify ways to manage crop residues to retain their advantages and limit their disadvantages. Project objectives will be addressed using several approaches. Historic farm production data recorded by sugar mills in the wet tropics will be analysed to determine the effect of residue burning or retention on crop yield and sugar content. The impact of climate on soil processes will be highlighed by development of an index of nitrogen mineralisation using the Agricultural Production Systems Simulator (APSIM) model. Increased understanding of nitrogen cycling in Australian sugarcane soils and management of crop residues will be gained through a field experiment recently established in the Australian wet tropics. From this experiment the decomposition and nitrogen dynamics of residues placed on the soil surface and incorporated will be compared. The effect of differences in temperature, soil water content and pH will be further examined on these soils under glasshouse conditions. Preliminary results show a high ammonium to nitrate ratio in tropics soils, which may be due to low rates of nitrification that increase the retention of nitrogen in a form (ammonium) that is less subject to leaching. Further results will be presented at Congress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil organic matter depletion caused by agricultural management systems have been identified as a critical problem in most tropical soils. The application of organic residues from agro-industrial activities can ameliorate this problem by increasing soil organic matter quality and quantity. Humic substances play an important role in soil conservation but the dynamics of their transformations is still poorly understood. This study evaluated the effect of compost application to two contrasting tropical soils (Inceptisol and Oxisol) for two years. Soil samples were incubated with compost consisting of sugarcane filter cake, a residue from the sugar industry, at 0, 40, 80, and 120 Mg ha-1. Filter cake compost changed the humic matter dynamics in both content and quality, affecting the soil mineralogical composition. It was observed that carbon mineralization was faster in the illite-containing Inceptisol, whereas humic acids were preserved for a longer period in the Oxisol. In both soils, compost application increased fulvic acid contents, favoring the formation of small hydrophilic molecules. A decrease in fluorescence intensity according to the incubation time was observed in the humic acids extracted from amended soils, revealing important chemical changes in this otherwise stable C pool.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

introduction of conservation practices in degraded agricultural land will generally recuperate soil quality, especially by increasing soil organic matter. This aspect of soil organic C (SOC) dynamics under distinct cropping and management systems can be conveniently analyzed with ecosystem models such as the Century Model. In this study, Century was used to simulate SOC stocks in farm fields of the Ibiruba region of north central Rio Grande do Sul state in Southern Brazil. The region, where soils are predominantly Oxisols, was originally covered with subtropical woodlands and grasslands. SOC dynamics was simulated with a general scenario developed with historical data on soil management and cropping systems beginning with the onset of agriculture in 1900. From 1993 to 2050, two contrasting scenarios based on no-tillage soil management were established: the status quo scenario, with crops and agricultural inputs as currently practiced in the region and the high biomass scenario with increased frequency of corn in the cropping system, resulting in about 80% higher biomass addition to soils. Century simulations were in close agreement with SOC stocks measured in 2005 in the Oxisols with finer texture surface horizon originally under woodlands. However, simulations in the Oxisols with loamy surface horizon under woodlands and in the grassland soils were not as accurate. SOC stock decreased from 44% to 50% in fields originally under woodland and from 20% to 27% in fields under grasslands with the introduction of intensive annual grain crops with intensive tillage and harrowing operations. The adoption of conservation practices in the 1980s led to a stabilization of SOC stocks followed by a partial recovery of native stocks. Simulations to 2050 indicate that maintaining status quo would allow SOC stocks to recover from 81% to 86% of the native stocks under woodland and from 80% to 91 % of the native stocks under grasslands. Adoption of a high biomass scenario would result in stocks from 75% to 95% of the original stocks under woodlands and from 89% to 102% in the grasslands by 2050. These simulations outcomes underline the importance of cropping system yielding higher biomass to further increase SOC content in these Oxisols. This application of the Century Model could reproduce general trends of SOC loss and recovery in the Oxisols of the Ibiruba region. Additional calibration and validation should be conducted before extensive usage of Century as a support tool for soil carbon sequestration projects in this and other regions can be recommended. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. 14C labeled glucose with or without 200 mg kg-1 of NH4+-N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m-1 (low EC; LEC) and 6.72 dS m-1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO2 and 14CO2 were monitored. Approximately 60 % of the glucose-14C added to LEC soil evolved as 14CO2, but only 20 % in HEC soil after the incubation period of 21 days. After one day, < 200 mg 14C was extractable from LEC soil, but > 500 mg 14C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH4+-N. The NO2- and NO3- concentrations were on average higher in LEC than in HEC soil, with exception of NO2- in HEC amended with NH4+-N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT Considering the importance of the riparian vegetation leaves as an energetic source to first order streams, the aim of the present study was to evaluate the leaf biomass contribution to the system and its temporal dynamics. With this purpose, monthly samples from July 2008 to June 2009 were collected using four sampling devices installed in three streams, in order to collect the vertical, lateral and terrestrial loads, and the benthic stock. We tested the following hypothesis: (1) leaf biomass input is higher after hydric stress periods; and (2) benthic stock biomass increase with higher loads from vertical and lateral entrances. Leaves represented 71.9% (on average) of all sampled allochthonous matter, with seasonal significant variation along the studied year. Peaks of leaf input were registered in September-October, after an increase in rainfall, and also in January, after a decrease in rainfall. Leaf input was higher in the lateral load.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The source, fate and diagentic pathway of sedimentary organic matter in estuaries are difficult to delineate due to the complexity of organic matter sources, intensive physical mixing and biological processes. A combination of bulk organic matter techniques and molecular biomarkers are found to be successful in explaining organic matter dynamics in estuaries. The basic requirement for these multi-proxy approaches are (i) sources have significantly differing characteristics, (ii) there are a sufficient number of tracers to delineate all sources and (iii) organic matter degradation and processing have little, similar or predictable effects on end member characteristics. Although there have been abundant researches that have attempted to tackle difficulties related to the source and fate of organic matter in estuarine systems, our understanding remains limited or rather inconsistent regarding the Indian estuaries. Cochin estuary is the largest among many extensive estuarine systems along the southwest coast of India. It supports as much biological productivity and diversity as tropical rain forests. In this study, we have used a combination of bulk geochemical parameters and different group of molecular biomarkers to define organic matter sources and thereby identifying various biogeochemical processes acting along the salinity gradient of the Cochin estuary

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dynamics of holon-doublon pairs is studied in Hubbard two-leg ladders using the time-dependent density matrix renormalization group method. We find that the geometry of the two-leg ladder, which is qualitatively different from a one-dimensional chain due to the presence of a spin gap, strongly affects the propagation of a doublon-holon pair. Two distinct regimes are identified. For weak interleg coupling, the results are qualitatively similar to the case of the propagation previously reported in Hubbard chains, with only a renormalization of parameters. More interesting is the case of strong interleg coupling where substantial differences arise, particularly regarding the double occupancy and properties of the excitations such as the doublon speed. Our results suggest a connection between the presence of a spin gap and qualitative changes in the doublon speed, indicating a weak coupling between the doublon and the magnetic excitations.