758 resultados para MATERNAL BLOOD GLUCOSE
Resumo:
The objective of the present investigation was to determine the course of maternal blood glucose levels in pregnant rats and its repercussions on the glucose levels and pancreas of their newborn pups. Diabetes was induced by alloxan (42 mg/kg body weight) and streptozotocin (40 mg/kg). Sixty-two pregnant Wistar rats weighing 180 to 250 g were divided into a control group and two groups with moderate (120 to 200 mg/dl glucose) and severe diabetes (greater than 200 mg/dl glucose), respectively. Blood glucose levels were measured in the dams on the 1st, 14th, and 21st days of pregnancy and in the pups at birth. The results were pooled for each litter. The fetal pancreases were removed after cesarian section performed on the 21st day of pregnancy, pooled for each litter and processed for histopathologic examination by light microscopy. Maternal blood glucose levels were significantly increased compared with the first day of pregnancy in both normal and diabetic rats starting on the 14th day of pregnancy. Fetal blood glucose levels correlated with maternal levels. The histopathologic changes characterized by vacuolization and basophilia of the cytoplasm of endocrine pancreas of newborn pups from darns with moderate or severe diabetes suggested pancreatic hyperactivity.
Resumo:
This study aimed at correlating maternal blood glucose levels with DNA damage levels in the offspring of women with diabetes or mild gestational hyperglycemia (MGH). Based on oral glucose tolerance test results and glycemic profiles, 56 pregnant women were allocated into 3 groups: nondiabetes, MGH, and diabetes. The offspring of these women (56 infants) were also evaluated. Maternal peripheral blood and umbilical cord blood samples were collected and processed for biochemical and DNA damage analysis by the comet assay. A positive correlation between maternal blood glucose mean and increased offspring DNA damage levels was observed. Hyperglycemia played a role in offspring DNA damage, but other diabetes-induced complications were also involved. Increased maternal blood glucose levels can lead to increased offspring DNA damage levels. Therefore, the monitoring, control, and treatment of pregnant women with diabetes and MGH are highly important to ensure a risk-free pregnancy and healthy infants.
Resumo:
Background: Although galactose is an important component in human lactose, there are few reports of its role in the newborn metabolism. Objective: To determine the relationship of blood galactose and glucose levels in mothers, cord blood, and breast-fed full-term newborn infants. Methods: Maternal and cord vein blood samples were obtained from 27 pregnant women at delivery, and from their breastfed, full-term newborns 48 h later. Galactose and glucose were determined by HPLC. Statistical analysis used ANOVA and Pearson correlation with p < 0.05. Results: Maternal galactose concentrations (0.08 +/- 0.03 mmol/l) were similar to cord blood galactose (0.07 +/- 0.03 mmol/l; p = 0.129). However, newborn blood galactose (0.05 +/- 0.02 mmol/l) was significantly lower than both cord (p = 0.042) and maternal blood (p = 0.002). Maternal blood glucose levels (4.72 +/- 0.86 mmol/l) were higher than cord blood (3.98 +/- 0.57 mmol/l; p < 0.001), and cord blood concentrations were higher than newborn blood levels (3.00 +/- 0.56 mmol/l; p < 0.001); all values expressed as mean +/- SD. Significant correlation was only seen between maternal and cord blood galactose levels (r = 0.67; p < 0.001) and glucose levels (r = 0.38; p = 0.047). Conclusion: the association and similarity between maternal and cord blood galactose levels suggest that the fetus is dependent on maternal galactose. In contrast, the lower galactose levels in newborn infants and a lack of association between both suggest self-regulation and a dependence on galactose ingestion. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
In order to determine the effect of maternal exercise on maternal nutritional status and fetal growth, young (Y = 45-50 days old) Wistar rats were divided into 4 groups of 5 to 8 animals: control pregnant (CP), control non-pregnant (CNP), exercise-trained (swimming 1 h/day, 5 days/week, for 19 days) pregnant (TP) and exercise-trained non-pregnant (TNP). Four equivalent groups of adult rats (A - 90-100 days old) were also formed. Serum glucose, total protein, albumin, hematocrit and liver glycogen were determined in female rats and pups. There were no statistical differences in serum glucose, total protein and albumin levels, litter size ot birth weight among exercise-trained animals, controls and their respective pups. Hematocrit was significantly lower in pups of exercise-trained young rats than in all other groups (YCP = 38.6 +/- 3.0; YTP = 32.6 +/- 2.1; ACP = 39.0 +/- 2.5; ATP = 39.2 +/- 2.9%). Liver glycogen levels were lower in pregnant than in non-pregnant rats but similar in exercise-trained and control rats of the same age and physiological status (YCNP = 4.1 +/- 0.2; YCP = 2.7 +/- 0.9; YTNP = 4.9 +/- 0.8; YTP = 2.7 +/-0.4; ACNP = 6.1 +/- 0.6; ACP = 3.1 +/- 0.8; ATNP = 6.6 +/- 0.8; ATP = 2.2 +/- 0.9 mg/100 mg). We conclude that pups of adult female rats are spared from the effects of this kind of exercise training during pregnancy. on the other hand, it appears that maternal adaptations to exercise training in young rats are able to preserve only some aspects of pup metabolism.
Resumo:
Purpose The aim was to assess the effects of a Tai Chi based program on health related quality of life (HR-QOL) in people with elevated blood glucose or diabetes who were not on medication for glucose control. Method 41 participants were randomly allocated to either a Tai Chi intervention group (N = 20) or a usual medical care control group (N = 21). The Tai Chi group involved 3 x 1.5 hour supervised and group-based training sessions per week for 12 weeks. Indicators of HR-QOL were assessed by self-report survey immediately prior to and after the intervention. Results There were significant improvements in favour of the Tai Chi group for the SF36 subscales of physical functioning (mean difference = 5.46, 95% CI = 1.35-9.57, P < 0.05), role physical (mean difference = 18.60, 95% CI = 2.16-35.05, P < 0.05), bodily pain (mean difference = 9.88, 95%CI = 2.06-17.69, P < 0.05) and vitality (mean difference = 9.96, 95% CI = 0.77-19.15, P < 0.05). Conclusions The findings show that this Tai Chi program improved indicators of HR-QOL including physical functioning, role physical, bodily pain and vitality in people with elevated blood glucose or diabetes who were not on diabetes medication.
Resumo:
Objectives To evaluate the feasibility, acceptability and effects of a Tai Chi and Qigong exercise programme in adults with elevated blood glucose. Design, Setting, and Participants A single group pre–post feasibility trial with 11 participants (3 male and 8 female; aged 42–65 years) with elevated blood glucose. Intervention Participants attended Tai Chi and Qigong exercise training for 1 to 1.5 h, 3 times per week for 12 weeks, and were encouraged to practise the exercises at home. Main Outcome Measures Indicators of metabolic syndrome (body mass index (BMI), waist circumference, blood pressure, fasting blood glucose, triglycerides, HDL-cholesterol); glucose control (HbA1c, fasting insulin and insulin resistance (HOMA)); health-related quality of life; stress and depressive symptoms. Results There was good adherence and high acceptability. There were significant improvements in four of the seven indicators of metabolic syndrome including BMI (mean difference −1.05, p<0.001), waist circumference (−2.80 cm, p<0.05), and systolic (−11.64 mm Hg, p<0.01) and diastolic blood pressure (−9.73 mm Hg, p<0.001), as well as in HbA1c (−0.32%, p<0.01), insulin resistance (−0.53, p<0.05), stress (−2.27, p<0.05), depressive symptoms (−3.60, p<0.05), and the SF-36 mental health summary score (5.13, p<0.05) and subscales for general health (19.00, p<0.01), mental health (10.55, p<0.01) and vitality (23.18, p<0.05). Conclusions The programme was feasible and acceptable and participants showed improvements in metabolic and psychological variables. A larger controlled trial is now needed to confirm these promising preliminary results.
Resumo:
Limited studies have examined the associations between air pollutants [particles with diameters of 10um or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days’ average of concentrations, a 100 µg/m3 increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95%CI: 0.15–0.19), 0.53 mmol/L (95%CI: 0.42–0.65), and 0.11 mmol/L (95%CI: 0.07–0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues.
Resumo:
Background. Patients with type 1 diabetes are at markedly increased risk of vascular complications. In this respect it is noteworthy that hyperglycaemia that is shown to cause endothelial dysfunction, has clearly been shown to be a risk factor for diabetic microvascular disease. However, the role of hyperglycaemia as a predictor of macrovascular disease is not as clear as for microvascular disease, although type 1 diabetes itself increases the risk of cardiovascular disease substantially. Furthermore, it is not known whether it is the short-term or the long-term hyperglycaemia that confers possible risk. In addition, the role of glucose variability as a predictor of complications is to a large extent unexplored. Interestingly, although hyperglycaemia increases the risk of pre-eclampsia in women with type 1 diabetes, it is unclear whether pre-eclampsia, a condition characterized by endothelial dysfunction, is also a risk factor for microvascular complication, diabetic nephropathy. Aims. This doctoral thesis investigated the role of acute hyperglycaemia and glucose variability on arterial stiffness and cardiac ventricular repolarisation in male patients with type 1 diabetes as well as in healthy male volunteers. The thesis also explored whether acute hyperglycaemia leads to an inflammatory response, endothelial dysfunction and oxidative stress. Finally, the role of pre-eclampsia, as a predictor of diabetic nephropathy in type 1 diabetes was examined. Subjects and methods. In order to study glucose variability and the daily glycaemic control, 22 male patients with type 1 diabetes, without any diabetic complications, were monitored for 72-h with a continuous glucose monitoring system. At the end of the 72-h glucose monitoring period a 2-h hyperglycaemic clamp was performed both in the patients with type 1 diabetes and in the 13 healthy age-matched male volunteers. Blood pressure, arterial stiffness and QT time were measured to detect vascular changes during acute hyperglycaemia. Blood samples were drawn at baseline (normoglycaemia) and during acute hyperglycaemia. In another patient sample, women with type 1 diabetes were followed during their pregnancy and restudied eleven years later to elucidate the role of pre-eclampsia and pregnancy-induced hypertension as potential risk factors for diabetic nephropathy. Results and conclusions. Acute hyperglycaemia increased arterial stiffness as well as caused a disturbance in the myocardial ventricular repolarisation, emphasizing the importance of a strict daily glycaemic control in male patients with type 1 diabetes. An inflammatory response was also observed during acute hyperglycaemia. Furthermore, a high mean daily blood glucose but not glucose variability per se is associated with arterial stiffness. While glucose variability in turn correlated with central blood pressure, the results suggest that the glucose metabolism is closely linked to the haemodynamic changes in male patients with uncomplicated type 1 diabetes. Notably, the results are not directly applicable to females. Finally, a history of a pre-eclamptic pregnancy, but not pregnancy-induced hypertension was associated with increased risk of diabetic nephropathy.
Resumo:
Diabetes is a serious disease during which the body's production and use of insulin is impaired, causing glucose concentration level toincrease in the bloodstream. Regulating blood glucose levels as close to normal as possible, leads to a substantial decrease in long term complications of diabetes. In this paper, an intelligent neural network on-line optimal feedback treatment strategy based on nonlinear optimal control theory is presented for the disease using subcutaneous treatment strategy. A simple mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system is considered based on the Bergman's minimal model. A glucose infusion term representing the effect of glucose intake resulting from a meal is introduced into the model equations. The efficiency of the proposed controllers is shown taking random parameters and random initial conditions in presence of physical disturbances like food intake. A comparison study with linear quadratic regulator theory brings Out the advantages of the nonlinear control synthesis approach. Simulation results show that unlike linear optimal control, the proposed on-line continuous infusion strategy never leads to severe hypoglycemia problems.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Ready-to-use screen printed glucose sensors are fabricated using Prussian Blue (PB) and Cobalt Phthalocyanine (CoPC) mediated carbon inks as working electrodes. The reference and counter electrodes are screen printed using silver/silver chloride and graphitic carbon paste respectively. The screen printed reference electrodes (internal reference electrode (IRE)) are found to be stable for more than 60 minutes when examined with saturated calomel electrode. Optimal operating voltage for PB and CoPC screen printed sensors are determined by hydrodynamic voltammetric technique. Glucose oxidase is immobilized on the working electrodes by cross-linking method. PB mediated glucose sensor exhibits a sensitivity of 5.60 mA cm(-2)/mM for the range, 10 to 1000 mu M. Sensitivity of CoPC mediated glucose sensor is found to be 5.224 mu A cm(-2)/mM and amperometeric response is linear for the range, 100 to 1500 mu M. Interference studies on the fabricated glucose sensors are conducted with species like uric acid and ascorbic acid. PB mediated sensors showed a completely interference-free behavior. The sensing characteristics of PB mediated glucose sensors are also studied in diluted human serum samples and the results are compared with the values obtained through standard clinical method. The co-efficient of variation is found to be less than 5%. (C) 2015 The Electrochemical Society. All rights reserved.
Resumo:
OBJECTIVE: This study was undertaken to compare preprandial and postprandial capillary glucose monitoring in pregnant women with type 1 diabetes.
Resumo:
According to the hypothesis of Traub, also known as the 'formula of Traub', postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.