250 resultados para MASTICATORY MOTONEURONS
Resumo:
Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.
Resumo:
The masticatory apparatus for two endemic species of golden monkey in China, Rhinopithecus bieti and Rhinopithecus roxellana, were compared with those of macaques, Macaca and leaf monkeys, Presbytis. Multivariate analyses demonstrated that the two golden monkey species are distinct. Interspecies allometric analyses revealed that golden monkeys differ in their masticatory apparatus from both macaques and leaf monkeys. The prominent symphysial fusion, corpus, and sagittal condylar dimension of R. roxellana may produce efficient biting force on the incisal and posterior canine teeth, with the heavy reaction force barn on the temporomandibular joint. However, the well-developed bizygamatic width and mandibular height in R. bieti suggest that posterior canine function is similarly prominent in R. roxellana, while incisal function is not. (C) 1995 Wiley-Liss, Inc.
Resumo:
DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.
Resumo:
L’activité rythmique des muscles masticateurs (ARMM) pendant le sommeil se retrouve chez environ 60% de la population générale adulte. L'étiologie de ce mouvement n'est pas encore complètement élucidée. Il est cependant démontré que l’augmentation de la fréquence des ARMM peut avoir des conséquences négatives sur le système masticatoire. Dans ce cas, l'ARMM est considérée en tant que manifestation d'un trouble moteur du sommeil connue sous le nom de bruxisme. Selon la Classification Internationale des Troubles du Sommeil, le bruxisme est décrit comme le serrement et grincement des dents pendant le sommeil. La survenue des épisodes d’ARMM est associée à une augmentation du tonus du système nerveux sympathique, du rythme cardiaque, de la pression artérielle et elle est souvent en association avec une amplitude respiratoire accrue. Tous ces événements peuvent être décrits dans le contexte d’un micro-éveil du sommeil. Cette thèse comprend quatre articles de recherche visant à étudier i) l'étiologie de l’ARMM pendant le sommeil en relation aux micro-éveils, et à évaluer ii) les aspects cliniques du bruxisme du sommeil, du point de vue diagnostique et thérapeutique. Pour approfondir l'étiologie de l’ARMM et son association avec la fluctuation des micro-éveils, nous avons analysé le patron cyclique alternant (ou cyclic alternating pattern (CAP) en anglais), qui est une méthode d’analyse qui permet d’évaluer l'instabilité du sommeil et de décrire la puissance des micro-éveils. Le CAP a été étudié chez des sujets bruxeurs et des sujets contrôles qui ont participé à deux protocoles expérimentaux, dans lesquels la structure et la stabilité du sommeil ont été modifiées par l'administration d'un médicament (la clonidine), ou avec l'application de stimulations sensorielles (de type vibratoire/auditif) pendant le sommeil. Dans ces deux conditions expérimentales caractérisées par une instabilité accrue du sommeil, nous étions en mesure de démontrer que les micro-éveils ne sont pas la cause ou le déclencheur de l’ARMM, mais ils représentent plutôt la «fenêtre permissive» qui facilite l'apparition de ces mouvements rythmiques au cours du sommeil. Pour évaluer la pertinence clinique du bruxisme, la prévalence et les facteurs de risque, nous avons effectué une étude épidémiologique dans une population pédiatrique (7-17 ans) qui était vue en consultation en orthodontie. Nous avons constaté que le bruxisme est un trouble du sommeil très fréquent chez les enfants (avec une prévalence de 15%), et il est un facteur de risque pour l'usure des dents (risque relatif rapproché, RRR 8,8), la fatigue des muscles masticateurs (RRR 10,5), les maux de tête fréquents (RRR 4,3), la respiration bruyante pendant le sommeil (RRR 3,1), et divers symptômes liés au sommeil, tels que la somnolence diurne (RRR 7,4). Ces résultats nous ont amenés à développer une étude expérimentale pour évaluer l'efficacité d'un appareil d'avancement mandibulaire (AAM) chez un groupe d'adolescents qui présentaient à la fois du bruxisme, du ronflement et des maux de tête fréquents. L'hypothèse est que dans la pathogenèse de ces comorbidités, il y a un mécanisme commun, probablement lié à la respiration pendant le sommeil, et que l'utilisation d'un AAM peut donc agir sur plusieurs aspects liés. À court terme, le traitement avec un AAM semble diminuer l'ARMM (jusqu'à 60% de diminution), et améliorer le ronflement et les maux de tête chez les adolescents. Cependant, le mécanisme d'action exact des AAM demeure incertain; leur efficacité peut être liée à l'amélioration de la respiration pendant le sommeil, mais aussi à l'influence que ces appareils pourraient avoir sur le système masticatoire. Les interactions entre le bruxisme du sommeil, la respiration et les maux de tête, ainsi que l'efficacité et la sécurité à long terme des AAM chez les adolescents, nécessitent des études plus approfondies.
Resumo:
Aims: To test for an association between rhythmic masticatory muscle activity during sleep, as assessed according to polysomnographic criteria for sleep bruxism (RMMA-SB), and myofascial pain (MFP), as well as the chance of occurrence of MFP in patients with RMMA-SB. Methods: Thirty MFP patients (diagnosed according to the Research Diagnostic Criteria for Temporomandibular Disorders) and 30 age- and gender-matcbed asymptomatic controls underwent a polysomnographic examination. Also, any self-reporting of daytime clenching (DC) was registered in 58 of these subjects. Results: Most MFP patients reported mild or moderate pain (46.67% and 43.33%, respectively), and only 3 (10%) reported severe pain. Pain duration ranged from 2 to 120 months (mean 34.67 +/- 36.96 months). Significant associations were observed between RMMA-SB and MFP as well as between DC and MFP. Conclusions: (1) RMMA-SB is significantly associated with MFP; (2) although RMMA-SB represents a risk factor for MFP, this risk is low; and (3) DC probably constitutes a stronger risk factor for MFP than RMMA-SB.
Resumo:
Orofacial movement is a complex function performed by facial and jaw muscles. Jaw movement is enacted through the triggering of motoneurons located primarily in the trigeminal motor nucleus (Mo5). The Mo5 is located in the pontine reticular formation, which is encircled by premotor neurons. Previous studies using retrograde tracers have demonstrated that premotor neurons innervating the Mo5 are distributed in brainstem areas, and electrophysiological studies have suggested the existence of a subcortical relay in the corticofugal-Mo5 pathway. Various neurotransmitters have been implicated in oral movement. Dopamine is of special interest since its imbalance may produce changes in basal ganglia activity, which generates abnormal movements, including jaw motor dysfunction, as in oral dyskinesia and possibly in bruxism. However, the anatomical pathways connecting the dopaminergic systems with Mo5 motoneurons have not been studied systematically. After injecting retrograde tracer fluorogold into the Mo5, we observed retrograde-labeled neurons in brainstem areas and in a few forebrain nuclei, such as the central nucleus of the amygdala, and the parasubthalamic nucleus. By using dual-labeled immunohistochemistry, we found tyrosine hydroxylase (a catecholamine-processing enzyme) immunoreactive fibers in close apposition to retrograde-labeled neurons in brainstem nuclei, in the central nucleus of the amygdala and the parasubthalamic nucleus, suggesting the occurrence of synaptic contacts. Therefore, we suggested that catecholamines may regulate oralfacial movements through the premotor brainstem nuclei, which are related to masticatory control, and forebrain areas related to autonomic and stress responses. (C) 2005 Elsevier B.V.. All rights reserved.
Resumo:
Purpose: This study assessed masticatory efficiency and duration of the masticatory cycle in 14 asymptomatic patients with severe bone resorption. All patients had worn complete dentures for over 10 years. Recall visits were scheduled at 5 months and 1 year after receiving new dentures.Materials and Methods: Fourteen patients were evaluated in this study. The Research Diagnostic Criteria questionnaire and tests of the efficiency and duration of the masticatory cycle were performed with artificial food before, 5 months after, and 1 year after new dentures were delivered. Masticatory efficiency was assessed using a sieve system; artificial food was ground for 35 masticatory cycles and monitored by the operator.Results: Masticatory efficiency at 5 months was significantly improved for the 0.42-mm mesh. An improvement in masticatory efficiency and a reduction in mastication time were observed with the new dentures after 1 year.Conclusion: The results of this study indicated that 5 months did not allow enough time to demonstrate improved muscular capacity and ability after receiving new dentures. After 1 year, the duration of the masticatory cycle was reduced, and masticatory efficiency was significantly improved.
Resumo:
The extent of separation between the maxillary and mandibular teeth in the fabrication of interocclusal splints designed to achieve efficiency and muscle relaxation is controversial and undefined in the literature. Based on this premise, the aim of this study was to evaluate the effect of interocclusal splint thicknesses of 3 and 6 millimeters on the electrical activity of the anterior temporal and masseter muscles during rest and dental clenching. Twenty asymptomatic individuals (10 males and 10 females) were selected using the Research Diagnostic Criteria (RDC). Electromyography (EMG) was performed both with and without the 3- and 6-mm splints using the Bio EMG software package, which recorded values given in microvolts (mu V). The results, which were assessed using analysis of variance (ANOVA) to a 5% significance level (p < 0.05), showed increased electrical activity of the masticatory muscles during dental clenching compared with at rest, with greater activity in the masseter muscle. The electrical activity did not differ according to the thickness of the splints or between males and females. We can conclude that both splint thicknesses are effective in treating muscle hyperactivity given their similar clinical behavior for asymptomatic individuals.
Resumo:
The aim of this study was to assess the electrical activity of the masseter and anterior temporal muscles in subjects with severe bone resorption at two different times: ( a) the initial period, with the complete dentures they had worn for over 10 years, and (b) the final period, 5 months after having new dentures put into place. Twelve asymptomatic subjects were asked to respond to the questionnaire, according to the research diagnostic criteria for temporomandibular disorders, before denture rehabilitation and 5 months after the new dentures were put in place. The electrical activity of the muscles was recorded during mastication in the initial and final period, using artificial food (Optocal). The operator monitored the 35 chewing cycles that were repeated to grind the artificial food. After wearing the new dentures for 5 months, the right anterior temporal muscle showed a statistical difference before and after denture rehabilitation at the beginning and end of mastication. Muscular capacity and ability reduced the electrical activity in the masseter muscles after rehabilitation. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
Purpose: The purpose of this study was to assess, through electromyographic activity (EMG), the silent period (SP) of masseter and anterior temporal muscles in dentate subjects (DS) and complete denture wearers (CDW).Materials and Methods: The evaluations were performed at the initial and final period of the mastication for the DS group. For the CDW group, the evaluations were performed at the initial period of mastication, with old complete dentures worn for more than 10 years (OCDW) and at the final period of the mastication with new complete dentures (NCDW), 5 months after rehabilitation. Twenty-four asymptomatic subjects (12 DS, 12 CDW) answered a questionnaire based on the Research Diagnostic Criteria for temporomandibular disorders. The CDW group answered the questionnaire before and after new denture insertion and after 5 months of rehabilitation. The SP of the muscles was recorded through EMG at the initial and final periods of mastication using artificial food (Optocal). The operator monitored 35 chewing cycles performed to grind the artificial food and selected eight open-close-clench-chewing cycles for the record.Results: The SP of the muscles analyzed with new complete dentures showed no statistical difference in comparison to the old dentures. There was a statistically significant difference in the SP between the CDW and DS groups for initial and final chewing.Conclusion: Lowered muscular capacity and ability reduced the SP of muscles after rehabilitation with NCDWs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The description of the macroscopic structure of the masticatory muscles is based upon the dissection of 26 adult and juvenile tufted capuchin monkeys (Cebus apella) of both sexes. A detailed description of the temporal, masseter and medial and lateral pterygoid muscles on each side of the head is given. Not only the general shape, origin and insertion are described, but also the architectonic organization, i.e. the stratiform disposition of the muscle parts. Anatomical variations in each sex or age appear to be few and unimportant. Anatomical aspects are found to be essentially similar to those found in other primates including man; however some characteristics differences do exist and deserve special comment.
Resumo:
Samples of the anterior and posterior regions of the masseter and temporal muscles and of the anterior belly of the digastric muscle of 4 adult male tufted capuchin monkeys (Cebus apella) were removed and stained with HE and submitted to the m-ATPase reaction (with alkaline and acid preincubation) and to the NADH-TR and SDH reactions. The results of the histoenzymologic reactions were similar, except for acid reversal which did not occur in fibers of the fast glycolytic (FG) type in the mandibular locomotor muscles. FG fibers had a larger area and were more frequent in all regions studied. No significant differences in frequency or area of each fiber type were detected, considering the anterior and posterior regions of the masseter and temporal muscles. The frequency of fibers of the fast oxidative glycolytic (FOG) and slow oxidative (SO) types and of FOG area differed significantly between the anterior belly of the digastric muscle and the mandibular locomotor muscle. The predominance of fast twitch (FG and FOG) fibers and the multipenniform and bipenniform internal architecture of the masseter and temporal muscles, respectively, are characteristics that permit the powerful bite typical of tufted capuchin monkeys.