4 resultados para MANUMYCIN
Resumo:
Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.
Resumo:
In our screening of marine Streptomycetes for bioactive principles, two novel antitumor antibiotics designated as chinikomycins A (2a) and B (2b) were isolated together with manumycin A (1), and their structures were elucidated by a detailed interpretation of their spectra. Chinikomycins A (2a) and B (2b) are chlorine-containing aromatized manumycin derivatives of the type 64-pABA-2 with an unusual para orientation of the side chains. They exhibited antitumor activity against different human cancer cell lines, but were inactive in antiviral, antimicrobial, and phytotoxicity tests.
Resumo:
Amyloid P-peptide (A beta) likely causes functional alterations in neurons well prior to their death. Nuclear factor-kappa B (NF-kappa B), a transcription factor that is known to play important roles in cell survival and apoptosis, has been shown to be modulated by A beta in neurons and glia, but the mechanism is unknown. Because A beta has also been shown to enhance activation of N-methyl-D-aspartate (NMDA) receptors, we investigated the role of NMDA receptor-mediated intracellular signaling pathways in A beta-induced NF-kappa B activation in primary cultured rat cerebellar cells. Cells were treated with different concentrations of A beta 1-40 (1 or 2 mu M) for different periods (6, 12, or 24 hr). MK-801 (NMDA antagonist), manumycin A and FTase inhibitor 1 (farnesyltransferase inhibitors), PP1 (Src-family tyrosine kinase inhibitor), PD98059 [mitogen-activated protein kinase (MAPK) inhibitor], and LY294002 [phosphatidylinositol 3-kinase (PI3-k) inhibitor] were added 20 min before A beta treatment of the cells. A beta induced a time- and concentration-dependent activation of NF-kappa B (1 mu M, 12 hr); both p50/p65 and p50/p50 NF-kappa B dimers were involved. This activation was abolished by MK-801 and attenuated by manumycin A, FTase inhibitor 1, PP1, PD98059, and LY294002. AP at 1 mu M increased the expression of inhibitory protein I kappa B, brain-derived neurotrophic factor, inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1 beta as shown by RTPCR assays. Collectively, these findings suggest that AP activates NF-kappa B by an NMDA-Src-Ras-like protein through MAPK and PI3-k pathways in cultured cerebellar cells. This pathway may mediate an adaptive, neuroprotective response to A beta. (c) 2007 Wiley-Liss, Inc.
Resumo:
Attachment of Ras protein to the membrane, which requires farnesylation at its C terminus, is essential for its biological activity. A promising pharmacological approach of antagonizing oncogenic Ras activity is to develop inhibitors of farnesyltransferase. We use Caenorhabditis elegans vulval differentiation, which is controlled by a Ras-mediated signal transduction pathway, as a model system to test previously identified farnesyltransferase inhibitors. We show here that two farnesyltransferase inhibitors, manumycin and gliotoxin, suppress the Multivulva phenotype resulting from an activated let-60 ras mutation, but not the Multivulva phenotype resulting from mutations in the lin-1 gene or the lin-15 gene, which act downstream and upstream of let-60 ras, respectively, in the signaling pathway. These results are consistent with the idea that the suppression of the Multivulva phenotype of let-60 ras by the two inhibitors is specific for Ras protein and that the mutant Ras protein might be more sensitive than wild-type Ras to the farnesyltransferase inhibitors. This work suggests that C. elegans vulval development could be a simple and effective in vivo system for evaluation of farnesyltransferase inhibitors against Ras-activated tumors.