941 resultados para MANUFACTURE
Resumo:
Off-site Manufacture (OSM) has long been recognised, both in Australia and internationally, as offering numerous benefits to all parties in the construction process. More importantly, it is recognised as a key vehicle for driving improvement within the construction industry. The uptake of OSM in construction is however limited, despite well documented benefits. The research aims to determine the ‘state-of-the-art’ of OSM in Australia. It confirms the benefits and identifies the real and perceived barriers to the widespread adoption of OSM. Further the project identifies opportunities for future investment and research. Although numerous reports have been produced in the UK on the state of OSM adoption within that region, no prominent studies exist for the Australian context. This scoping study is an essential component upon which to build any initiatives that can take advantage of the benefits of OSM in construction. The Construction 2020 report predicted that OSM is set to increase in use over the next 5-15 years, further justifying the need for such a study. The long-term goal of this study is to contribute to the improvement of the Australian construction industry through a realisation of the potential benefits of OSM.
Resumo:
Off-site manufacture (OSM) offers numerous benefits to all parties in the construction process. The uptake of OSM in Australia has, however, been limited. This limited uptake corresponds to similar trends in the UK and US, although the level of OSM there appears to be increasing. This project undertook three workshops — one each in Victoria, Queensland and Western Australia — and 18 interviews with key stakeholders to assist in identifying the general benefits and barriers to OSM uptake in the Australian construction industry. Seven case studies were also undertaken, involving construction projects that used OSM, ranging from civil projects through to residential. Each of these case studies has been analysed to identify what worked and what didn’t, and suggest the lessons to be learned from each project.
Resumo:
Much has been written on Off-site Manufacture (OSM) in construction, particularly regarding the perceived benefits and barriers to implementation. However, very little understanding of the state of OSM in the Australian construction industry exists. A ‘scoping study' has recently been undertaken to determine the ‘state-of-the-art’ of OSM in Australia. This involved several industry workshops, interviews and case studies across four major states of Australia. The study surveyed a range of suppliers across the construction supply-chain, incorporating the civil, commercial and housing segments of the market. This revealed that skills shortages and lack of adequate OSM knowledge are generally the greatest issues facing OSM in Australia. The drivers and constraints that emerged from the research were, in large measure, consistent with those found in the US and UK, although some Australian anomalies are evident, such as the geographical disparity of markets. A comparative analysis with similar studies in the UK and US is reported, illustrating both the drivers and constraints confronting the industry in Australia. OSM uptake into the future is however dependent on many factors, not least of which is a better understanding of the construction process and its associated costs.
Resumo:
This thesis is a documented energy audit and long term study of energy and water reduction in a ghee factory. Global production of ghee exceeds 4 million tonnes annually. The factory in this study refines dairy products by non-traditional centrifugal separation and produces 99.9% pure, canned, crystallised Anhydrous Milk Fat (Ghee). Ghee is traditionally made by batch processing methods. The traditional method is less efficient, than centrifugal separation. An in depth systematic investigation was conducted of each item of major equipment including; ammonia refrigeration, a steam boiler, canning equipment, pumps, heat exchangers and compressed air were all fine-tuned. Continuous monitoring of electrical usage showed that not every initiative worked, others had pay back periods of less than a year. In 1994-95 energy consumption was 6,582GJ and in 2003-04 it was 5,552GJ down 16% for a similar output. A significant reduction in water usage was achieved by reducing the airflow in the refrigeration evaporative condensers to match the refrigeration load. Water usage has fallen 68% from18ML in 1994-95 to 5.78ML in 2003-04. The methods reported in this thesis could be applied to other industries, which have similar equipment, and other ghee manufacturers.
Resumo:
In Australia and many other countries worldwide, water used in the manufacture of concrete must be potable. At present, it is currently thought that concrete properties are highly influenced by the water type used and its proportion in the concrete mix, but actually there is little knowledge of the effects of different, alternative water sources used in concrete mix design. Therefore, the identification of the level and nature of contamination in available water sources and their subsequent influence on concrete properties is becoming increasingly important. Of most interest, is the recycled washout water currently used by batch plants as mixing water for concrete. Recycled washout water is the water used onsite for a variety of purposes, including washing of truck agitator bowls, wetting down of aggregate and run off. This report presents current information on the quality of concrete mixing water in terms of mandatory limits and guidelines on impurities as well as investigating the impact of recycled washout water on concrete performance. It also explores new sources of recycled water in terms of their quality and suitability for use in concrete production. The complete recycling of washout water has been considered for use in concrete mixing plants because of the great benefit in terms of reducing the cost of waste disposal cost and environmental conservation. The objective of this study was to investigate the effects of using washout water on the properties of fresh and hardened concrete. This was carried out by utilizing a 10 week sampling program from three representative sites across South East Queensland. The sample sites chosen represented a cross-section of plant recycling methods, from most effective to least effective. The washout water samples collected from each site were then analysed in accordance with Standards Association of Australia AS/NZS 5667.1 :1998. These tests revealed that, compared with tap water, the washout water was higher in alkalinity, pH, and total dissolved solids content. However, washout water with a total dissolved solids content of less than 6% could be used in the production of concrete with acceptable strength and durability. These results were then interpreted using chemometric techniques of Principal Component Analysis, SIMCA and the Multi-Criteria Decision Making methods PROMETHEE and GAIA were used to rank the samples from cleanest to unclean. It was found that even the simplest purifying processes provided water suitable for the manufacture of concrete form wash out water. These results were compared to a series of alternative water sources. The water sources included treated effluent, sea water and dam water and were subject to the same testing parameters as the reference set. Analysis of these results also found that despite having higher levels of both organic and inorganic properties, the waters complied with the parameter thresholds given in the American Standard Test Method (ASTM) C913-08. All of the alternative sources were found to be suitable sources of water for the manufacture of plain concrete.
Resumo:
One of the fundamental issues that remains unresolved in patent law today, both in Australia and in other jurisdictions, is whether an invention must produce a physical effect or cause a physical transformation of matter to be patentable, or whether it is sufficient that an invention involves a specific practical application of an idea or principle to achieve a useful result. In short, the question is whether Australian patent law contains a physicality requirement. Despite being recently considered by the Federal Court, this is arguably an issue that has yet to be satisfactorily resolved in Australia. In its 2006 decision in Grant v Commissioner of Patents, the Full Court of the Federal Court of Australia found that the patentable subject matter standard is rooted in the physical, when it held that an invention must involve a physical effect or transformation to be patent eligible. That decision, however, has been the subject of scrutiny in the academic literature. This article seeks to add to the existing literature written in response to the Grant decision by examining in detail the key common law cases decided prior to the High Court’s watershed decision in National Research Development Corporation v Commissioner of Patents, which is the undisputed authoritative statement of principle in regards to the patentable subject matter standard in Australia. This article, in conjunction with others written by the author, questions the Federal Court’s assertion in Grant that the physicality requirement it established is consistent with existing law.
Resumo:
Microwave heating technology is a cost-effective alternative way for heating and curing of used in polymer processing of various alternate materials. The work presented in this paper addresses the attempts made by the authors to study the glass transition temperature and curing of materials such as casting resins R2512, R2515 and laminating resin GPR 2516 in combination with two hardeners ADH 2403 and ADH 2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. During this investigation it has been noted that microwave heated mould materials resulted with higher glass transition temperatures and better microstructure. It also noted that Microwave curing resulted in a shorter curing time to reach the maximum percentage cure. From this study it can be concluded that microwave technology can be efficiently and effectively used to cure new generation alternate polymer materials for manufacture of injection moulds in a rapid and efficient manner. Microwave curing resulted in a shorter curing time to reach the maximum percentage cure.
Resumo:
A co-precipitation process for large-scale manufacture of bismuth-based HTSC powders has been demonstrated. Powders manufactured by this process have a high phase purity and precisely reproducible stoichiometry. Controlled time and temperature variations are used to convert precursors to HTSC compounds and to obtain specific particle-size distributions. The process has been demonstrated for a variety of compositions in the BSCCO system. Electron microscopy X-ray diffraction, inductively coupled plasma spectroscopy and magnetic-susceptibility measurements are used to characterize the powders.
Resumo:
This work presents an assessment of the coprecipitation technique for the reliable production of high-temperature superconducting (HTS) copper-oxide powders in quantities scaled up to 1 kg. This process affords precise control of cation stoichiometry (< 4% relative), occurs rapidly (almost instantaneously) and can be suitably developed for large-scale (e.g. tonne) manufacture of HTS materials. The process is based upon a simple control of the chemistry of the cation solution and precipitation with oxalic acid. This coprecipitation method is applicable to all copper-oxides and has been demonstrated in this work using over thirty separate experiments for the following compositions: YBa2Cu3O7-δ, Y2BaCuO5 and YBa2Cu4O8. The precursor powders formed via this coprecipitation process are fine-grained (∼ 5-10 nm), chemically homogeneous at the nanometer scale and reactive, Conversion to phase-pure HTS powders can therefore occur in minutes at appropriate firing temperatures. © 1995.
Resumo:
Quantities of Y2BaCuO5 powder greater than 500g have been manufactured by a co-precipitation process. By suitable heat treatments, the particle size of these powders can be varied from 5µm to less than 500nm. Sub-micrometer size powders may, under some conditions, have a duller green colour which is attributed to <2% unreacted material. However, after re-grinding and re-firing of this powder, high-purity powders can be achieved without significant grain growth. Inductively coupled plasma (ICP) spectroscopy is used to measure the stoichiometry of the powders and X-ray diffraction is used to determine phase purity. In both cases, the bulk composition is consistent with Y2BaCuO5 and phase purity is considered better than 95%.