954 resultados para MANGANESE OXIDES
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
One hundred and twenty-five mineral grains from 45 visually pure K-bearing Mn oxide (hollandite group) samples collected from weathering profiles in the Mt Tabor region of central Queensland, Australia, were analysed by the Ar-40/Ar-39 laser probe technique. These K-Mn oxides precipitated mainly through a process of cavity filling (direct precipitation from weathering solution), with botryoidal texture formed by micrometric mineral bands. Well-defined and reproducible plateau ages have been obtained for most samples, ranging from 27.2 +/- 0.8 to 6.8 +/- 0.5 Ma (2 sigma). Statistical analysis of the geochronological results by mixture modelling suggests an episodic mineral precipitation history, with two major peaks at 20.2 +/- 0.22 Ma and 16.5 +/- 0.17 Ma. The geochronological results, when combined with information on paragenetic relationships and mineralogical textures obtained from petrographic, scanning electron microscopy, and electron microprobe investigations, indicate that warm and humid palaeoclimatic conditions favourable to intense chemical weathering prevailed in central Queensland from late Oligocene to middle Miocene, particularly in the early Miocene. These results, in conjunction with previous and ongoing investigations in NW and eastern Queensland, suggest that most of Queensland was dominated by humid climates during the Miocene. (C) 2002 Elsevier Science BN. All rights reserved.
Resumo:
Manganese oxides in association with paleo-weathering may provide significant insights into the multiple factors affecting the formation and evolution of weathering profiles, such as temperature, precipitation, and biodiversity. Laser probe step-heating analysis of supergene hollandite and cryptomelane samples collected from central Queensland, Australia, yield well-defined plateaus and consistent isochron ages, confirming the feasibility, dating very-fined supergene manganese oxides by Ar-40/(39) Ar technique. Two distinct structural sites hosting Ar isotopes can be identified in light of their degassing behaviors obtained by incremental heating analyses. The first site, releasing its gas fraction at the laser power 0.2-0.4 W, yields primarily Ar-40(atm), Ar-38(atm), and Ar-36(atm), (atmospheric Ar isotopes). The second sites yield predominantly Ar-40* (radiogenic Ar-40), Ar-39(K), and Ar-38(K) (nucleogenic components), at similar to0.5-1.0 W. There is no significant Ar gas released at the laser power higher than 1.0 W, indicating the breakdown of the tunnel sites hosting the radiogenic and nucleogenic components. The excellent match between the degassing behaviors of Ar-40*, Ar-39(K), and Ar-38(K) suggests that these isotopes occupy the same crystallographic sites and that Ar-39(K) loss from the tunnel site by recoil during neutron irradiation and/or bake-out procedure preceding isotopic analysis does not occur. Present investigation supports that neither the overwhelming atmospheric Ar-40 nor the very-fined nature of the supergene manganese oxides poses problems in extracting meaningful weathering geo-chronological information by analyzing supergene manganese oxides minerals.
Resumo:
Perovskite type piezoelectric and manganese oxide materials have gained a lot of attention in the field of device engineering. Lead zirconium titananium oxide (PbZri.iTiiOa or PZT) is a piezoelectric material widely used as sensors and actuators. Miniaturization of PZTbased devices will not only perfect many existing products, but also opens doors to new applications. Lanthanum manganese oxides Lai-iAiMnOa (A-divalent alkaline earth such as Sr, Ca or Ba) have been intensively studied for their colossal magnetoresistance (CMR) properties that make them applicable in memory cells, magnetic and pressure sensors. In this study, we fabricate PZT and LSMO(LCMO) heterostructures on SrTiOa substrates and investigate their temperature dependency of resistivity and magnetization as a function of the thickness of LSMO(LCMO) layer. The microstructure of the samples is analysed through TEM. In another set of samples, we study the effect of application of an electric field across the PZT layer that acts as an external pressure on the manganite layer. This verifies the correlation of lattice distortion with transport and magnetic properties of the CMR materials.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The manganese minerals occur in the peripheral zone of the Butte district with quartz in veins, which at depth contain galena and sphalerite closely associated with silver-bearing minerals. The manganese oxides are all oxidation products formed by weathering of primary rhodochrosite or rhodonite.
Resumo:
Concretions of iron and manganese oxides and hydrous oxidesóobjects commonly called manganese nodulesóare widely distributed not only on the deep-sea floor but also in shallow marine environments1. Such concretions were not known to occur north of Cape Mendocino in the shallow water zones bordering the North-East Pacific Ocean until the summer of 1966 when they were recovered by one of us (J. W. M.) in dredge samples from Jervis Inlet, a fjord approximately 50 miles north-west of Vancouver, British Columbia.
Resumo:
Several bog manganese deposits were discovered in the Riding Mountain area in Manitoba during the spring and summer of 1940. A study was made of the known deposits to determine the grade of the occurrences, a possible source of the manganese oxides in the bog deposits and the possibilities of locating other manganese occurrences. Samples of the bog manganese, of spring waters from which the manganese oxides have apparently been precipitated, of the Odanah shale in which the deposits occur, and of "ironstone" nodules found in the Odanah and Riding Mountain shales were gathered in the field and later analyzed. In addition to chemical analyses of the above-mentioned samples, several polished sections of the manganese oxides were prepared and studied under the microscope, thin-sections of nodules were examined, and spectrographic analyses of both nodules and bog manganese were made. ...
Resumo:
Ferromanganese nodules in the deep-sea and in freshwater lakes usually accrete layers rich in manganese oxides alternating with layers rich in iron oxides. The mechanism producing these alternating layers is unknown; indeed, the mechanism producing the nodules themselves is unknown. In Oneida Lake, New York, precipitants from the lake water and the surfaces of nodules at the sediment-water interface are enriched in Mn, whereas nodules buried in lake sediments have surface layers enriched in Fe. It is hypothesized here, using field and laboratory evidence, that reduction and mobilization of Mn from the nodule surface during periods of anoxic sediment cover produce the high Fe layers observed in the nodules.
Resumo:
Manganese nodules from the Suiko Seamount exhibit the significant characteristics in mineral compositions. Well crystallized todorokite and birnessite, which are principal manganese mineral phase in nodules, only occur in the oxide layer directly incasing pebbles and coarse sand. The preferential formation of todorokite or birnessite phases seem to be principally controlled by the reaction rate of iron-manganese oxides with trace elements such as Cu, Ni, Co, Zn, Pb concentrated in nodules, rather than redox characteristics of sedimentary environment or mineralogical diagenetic process.
Resumo:
Manganese nodules occurring within marine sediments of presumably Upper Miocene-Lower Pliocene age from cores obtained by the Argentine oceanographic vessel ARA Islas Orcadas in 1977 on the Malvinas (Falkland) Plateau and neighbouring Scotia Sea were studied with the aim of comparing them with other fossil nodules found on the mainland of Argentina that were also ascribed to the marine environment. After optical mineralogical, chemical, X-ray and trace element analysis, the studied "nodules" proved to be actually wacke clasts cemented by manganese oxides with a high Fe/Mn ratio corresponding to a continental environment. The studied "nodules" thus differ from the Argentine mainland nodules and are supposed to have been transported from continental environments and then deposited in the marine realms. The wacke clasts became then nuclei for the deposition of the marine manganese oxides of the coatings. The proportion of trace elements, which is high, suggests the growth of the nodules in the marine environment.
Resumo:
The ability of the hydrated oxides of manganese and iron to adsorb ions from solution (scavenging) is considered in relation to some problems in marine geology, chemistry, and biology. In the ferruginous sediments of the Pacific Ocean, iron oxides are accompanied by titanium, cobalt, and zirconium in amounts proportional to the iron content. Similarly, copper and nickel are linearly related to the manganese content. These observations are explained on the basis of scavenging. An electrochemical theory for the formation of manganese nodules is presented. Marine sediments are classified on the basis of the geosphere in which the solid phases originate. The distribution of certain ionic species in sea water between the solid and aqueous phases is considered on the basis of scavenging and co-ordination compound theory. The concentration of minor elements by members of the marine biosphere is explained either by the direct uptake of the element or by the uptake of iron or manganese oxides with the accompanying scavenged element.