185 resultados para MALTOSE
Resumo:
Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6(1)22, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 angstrom, and contained two molecules in the asymetric unit. It diffracted to 2.24 angstrom resolution.
Resumo:
We present a novel protein crystallization strategy, applied to the crystallization of human T cell leukemia virus type 1 (HTLV-1) transmembrane protein gp21 lacking the fusion peptide and the transmembrane domain, as a chimera with the Escherichia coli maltose binding protein (MBP). Crystals could not be obtained with a MBP/gp21 fusion protein in which fusion partners were separated by a flexible linker, but were obtained after connecting the MBP C-terminal alpha-helix to the predicted N-terminal alpha-helical sequence of gp21 via three alanine residues. The gp21 sequences conferred a trimeric structure to the soluble fusion proteins as assessed by sedimentation equilibrium and X-ray diffraction, consistent with the trimeric structures of other retroviral transmembrane proteins. The envelope protein precursor, gp62, is likewise trimeric when expressed in mammalian cells. Our results suggest that MBP may have a general application for the crystallization of proteins containing N-terminal alpha-helical sequences.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
Células de 5. carlsbergensis crescidas em meio de cultura DPE diferenciados apenas em sua principal fonte de carbono (glicose, galactose e maltose) tiveram diferentes comportamentos quando postas a fermentar glicose, galactose, maltose e rafinose, em manômetro de Warburg. Presume-se que sejam enzimas constitutivos para o citado microorganismo, sacarase e hexoquinase e enzimas adaptativos, maltase, alfa-galactosidase e galactowaldenase.
Resumo:
Genetic algorithm was used for variable selection in simultaneous determination of mixtures of glucose, maltose and fructose by mid infrared spectroscopy. Different models, using partial least squares (PLS) and multiple linear regression (MLR) with and without data pre-processing, were used. Based on the results obtained, it was verified that a simpler model (multiple linear regression with variable selection by genetic algorithm) produces results comparable to more complex methods (partial least squares). The relative errors obtained for the best model was around 3% for the sugar determination, which is acceptable for this kind of determination.
Resumo:
Under de senaste åren har intresset för utnyttjandet av förnybara resurser kraftigt ökat. I samband med detta utgör kolhydrater en viktig del av den tillgängliga förnybara biomassan och den har därefter blivit föremål för ett stort intresse inom hållbar kemi. Sockeralkoholer är en särskilt viktig grupp av molekyler som vanligtvis erhålls ur kolhydrater och som har mångsidiga tillämpningar som t.ex. lågkalorihaltiga sötningsmedel. Forskningen i doktorsarbetet omfattar hydreringen av naturligt förekommande sockerarter L-arabinos, D-galaktos, D-maltos och L-ramnos till respektive sockeralkoholer. Dessa sockeralkoholer kan användas bl.a. som hälsosamma sötningsmedel på samma sätt som xylitol. Grunden för detta arbete består av hydreringsexperiment som utfördes på en dispergerad ruteniumkatalysator i syfte att studera bildningskinetiken av de motsvarande sockeralkoholerna. Reaktionerna genomfördes vid temperaturer mellan 90 och 130 °C och vätetryck mellan 40 och 60 bar. Under dessa betingelser var det möjligt att åstadkomma sockeromvandlingar upp till 100 %. Reaktionshastigheterna modellerades matematiskt. Konkurrerande kinetiska modeller som baserades på Langmuir-Hinshelwood-konceptet föreslogs för att beskriva reaktionerna. Parametrar i hastighetsekvationerna bestämdes därefter genom icke-linjär regression. Dessa modeller kunde väl förutsäga hydreringsreaktionernas förlopp och de kan följaktligen användas för design av industriella anläggningar. Ytterligare hydreringsexperiment med sockerblandningar genomfördes för att fördjupa kunskaper i kinetik och reaktionsmekanismer av sockerhydreringen. Studierna genomfördes med syntetiska sockerblandningar av L-arabinos och D-galaktos (de viktigaste komponenterna i hemicellulosan arabinogalaktan). Fullständig omsättning uppnåddes med utmärkta selektiviteter som överskred 95 % och dessutom inverkade varken temperatur eller vätetryck på reaktionens förlopp på något oväntat sätt. Antagandet av konkurrerande adsorption för en samtidig reduktion av båda sockermolekylerna gav en kinetisk modell som noggrant beskrev de experimentella resultaten. Idén om att utforska potentiella sätt att påskynda bildningen av sockeralkoholer ledde till utföringen av hydreringsexperiment med L-arabinos och D-galaktos i närvaro av ultraljud. Det visade sig att ultraljudets inverkan var oberoende av sockerhalten och vätetrycket och att bestrålningen gynnade hydreringen av D-galaktos trots att den inte förhindrade Ru/C-katalysatorns deaktivering överhuvudtaget. En kinetisk modell som beaktade deaktiveringen utvecklades. Kontinuerlig hydrering av L-arabinos genomfördes med tre olika Ru-katalysatorer på tre olika bärare: tyg av aktivt kol, kolnanorör på svampliknande metalliska strukturer samt krossade partiklar av en kommersiell Ru/C-katalysator. Det visade sig att det var möjligt att omvandla L-arabinos till arabitol med höga selektiviteter med hjälp av Ru/koltyg-katalysatorn. Dessa experiment demonstrerade att hydreringen av de valda sockerarterna är en helt genomförbar rutt till framställning av fin- och specialkemikalier, som kan förverkligas i större skala.
Resumo:
Trehalose biosynthesis and its hydrolysis have been extensively studied in yeast, but few reports have addressed the catabolism of exogenously supplied trehalose. Here we report the catabolism of exogenous trehalose by Candida utilis. In contrast to the biphasic growth in glucose, the growth of C. utilis in a mineral medium with trehalose as the sole carbon and energy source is aerobic and exhibits the Kluyver effect. Trehalose is transported into the cell by an inducible trehalose transporter (K M of 8 mM and V MAX of 1.8 µmol trehalose min-1 mg cell (dry weight)-1. The activity of the trehalose transporter is high in cells growing in media containing trehalose or maltose and very low or absent during the growth in glucose or glycerol. Similarly, total trehalase activity was increased from about 1.0 mU/mg protein in cells growing in glucose to 39.0 and 56.2 mU/mg protein in cells growing in maltose and trehalose, respectively. Acidic and neutral trehalase activities increased during the growth in trehalose, with neutral trehalase contributing to about 70% of the total activity. In addition to the increased activities of the trehalose transporter and trehalases, growth in trehalose promoted the increase in the activity of alpha-glucosidase and the maltose transporter. These results clearly indicate that maltose and trehalose promote the increase of the enzymatic activities necessary to their catabolism but are also able to stimulate each other's catabolism, as reported to occur in Escherichia coli. We show here for the first time that trehalose induces the catabolism of maltose in yeast.
Resumo:
Cubos de melão de 20mm da variedade Cucumis melo inodorus, cultivar Gold Mine foram desidratados osmoticamente com o objetivo de se estudar a cinética de transferência de massa durante o processo. As amostras foram imersas em soluções hipertônicas de sacarose ou maltose nas concentrações de 40 a 60°Brix e a desidratação foi conduzida por 8 horas com temperatura controlada (30 ou 40°C) e agitação de 120rpm. Perda de água e incorporação de sólidos na fruta foram avaliados ao longo do processo em função da temperatura de tratamento, tipo e concentração da solução. Os coeficientes de difusão para a água e os açúcares foram estimados através de um modelo empírico da literatura, baseado na equação de Fick. Para todos os ensaios, a perda de água aumentou significativamente com a elevação da temperatura e da concentração da solução desidratante, entretanto, os ensaios com maltose promoveram uma maior taxa de saída de água da fruta e menor ganho de sólidos. O modelo empírico utilizado se ajustou adequadamente aos dados experimentais, apresentando valores do coeficiente de correlação (R²) superiores a 0,92.
Resumo:
A structure-function study was carried out to increase knowledge of how glycosidic linkages and molecular weights of carbohydrates contribute toward the selectivity of fermentation by gut bacteria. Oligosaccharides with maltose as the common carbohydrate source were used. Potentially prebiotic alternansucrase and dextransucrase maltose acceptor products were synthesized and separated into different molecular weights using a Bio-gel P2 column. These fractions were characterized by matrix-assisted laser desorption/ionization time-of-flight. Nonprebiotic maltooligosaccharides with degrees of polymerization (DP) from three to seven were commercially obtained for comparison. Growth selectivity of fecal bacteria on these oligosaccharides was studied using an anaerobic in vitro fermentation method. In general, carbohydrates of DP3 showed the highest selectivity towards bifidobacteria; however, oligosaccharides with a higher molecular weight (DP6-DP7) also resulted in a selective fermentation. Oligosaccharides with DPs above seven did not promote the growth of "beneficial" bacteria. The knowledge of how specific structures modify the gut microflora could help to find new prebiotic oligosaccharides.
Resumo:
alpha-(1-6) and alpha-(1-3)-linked oligosaccharides were obtained from the reaction between sucrose and maltose, catalyzed by an alternansucrase isolated from Leuconostoc mesenteroides NRRL B-21297 and separated using a Bio-Gel P2 column in six fractions. Fractions 1, 2, and 3 were mainly composed of DP3, DP4, and DP5, respectively. However, fractions 4, 5, and 6 consisted of mixtures from DP5 to IDP9, and they are identified here as DP5.7, DP6.7, and DP7.4, respectively. Potential prebiotic properties of these oligosaccharides were tested using pure and mixed cultures. Generally, in pure studies, most of the tested bacteria failed to grow or grew poorly using the DP6.7 and DP7.4 fractions and showed the greatest growth on DP3. Growth of fecal bacteria on the maltose-acceptor products was tested following an in vitro fermentation method. DP3 showed the highest prebiotic effect, followed by DP4 and DP6.7, whereas DP7.4 did not present any prebiotic activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The crystal structure of Canavalia maritima lectin (ConM) complexed with trehalose and maltose revealed relevant point mutations in ConA-like lectins. ConM with the disaccharides and other ConA-like lectins complexed with carbohydrates demonstrated significant differences in the position of H-bonds. The main difference in the ConM structure is the replacement of Pro202 by Ser202, a residue that promotes the approximation of Tyr12 to the carbohydrate-binding site. The O-6' of the second glucose ring in maltose interacts with Tyr12, while in trehalose the interaction is established by the O-2' and Tyr12, explaining the higher affinity of ConM for disaccharides compared to monosaccharides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.
Resumo:
Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that D-maltose is the best inducer of the enzyme synthesis ( 7.05 U/ mg dry biomass at 48 h), while D-glucose and D-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with D-cellobiose. When oat spelt xylan was supplemented with D-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/ L, leading to a reduction of 60% on the enzyme production. on the other hand, when the xylan medium was supplemented with D- xylose ( 3.0 or 5.0 g/ L), this effect was more evident ( 80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/ L, induced xylanase production on the maltose medium. on this medium, the repressive effect of xylose, at 3.0 or 5.0 g/ L, was less expressive when compared to its effect on the xylan medium.
Resumo:
In this work, electrochemical maltose biosensors based on mutants of the maltose binding protein (MBP) are developed. A ruthenium II complex (Ru II ), which is covalently attached to MBP, serves as an electrochemical reporter of MBP conformational changes. Biosensors were made through direct attachment of Ru II complex modified MBP to gold electrode surfaces. The responses of some individual mutants were evaluated using square wave voltammetry. A maltose-dependent change in Faradic current and capacitance was observed. It is therefore demonstrated that biosensors using generically this family of bacterial periplasmic binding proteins (bPBP) can be made lending themselves to facile biorecognition element preparation and low cost electrochemical transduction.