952 resultados para MALE RATS
Resumo:
Rationale: Anabolic steroids are drugs of abuse. However, the potential for addiction remains unclear. Testosterone induces conditioned place preference in rats and oral self-administration in hamsters. Objectives: To determine if male rats and hamsters consume testosterone by intravenous (IV) or intracerebroventricular (ICV) self- administration. Methods: With each nose-poke in the active hole during daily 4-h tests in an operant condi- tioning chamber, gonad-intact adult rats and hamsters received 50 mg testosterone in an aqueous solution of b-cyclodextrin via jugular cannula. The inactive nose- poke hole served as a control. Additional hamsters received vehicle infusions. Results: Rats (n=7) expressed a significant preference for the active nose-poke hole (10.0€2.8 responses/4 h) over the inactive hole (4.7€1.2 responses/4 h). Similarly, during 16 days of testosterone self-administration IV, hamsters (n=9) averaged 11.7€2.9 responses/4 h and 6.3€1.1 responses/4 h in the active and inactive nose-poke holes, respectively. By contrast, vehicle controls (n=8) failed to develop a preference for the active nose-poke hole (6.5€0.5 and 6.4€0.3 responses/4 h). Hamsters (n=8) also self-administered 1 mg testosterone ICV (active hole:39.8€6.0 nose-pokes/ 4 h; inactive hole: 22.6€7.1 nose-pokes/4 h). When testosterone was replaced with vehicle, nose-poking in the active hole declined from 31.1€7.6 to 11.9€3.2 responses/ 4 h within 6 days. Likewise, reversing active and inactive holes increased nose-poking in the previously inactive hole from 9.1€1.9 to 25.6€5.4 responses/4 h. However, reducing the testosterone dose from 1 mg to 0.2 mg per 1 ml injection did not change nose-poking. Conclu- sions: Compared with other drugs of abuse, testosterone reinforcement is modest. Nonetheless, these data support the hypothesis that testosterone is reinforcing.
Resumo:
Human parathyroid hormone (hPTH) is currently the only treatment for osteoporosis that forms new bone. Previously we described a fish equivalent, Fugu parathyroid hormone 1 (fPth1) which has hPTH-like biological activity in vitro despite fPth1(1–34) sharing only 53% identity with hPTH(1–34). Here we demonstrate the in vivo actions of fPth1(1–34) on bone. In study 1, young male rats were injected intermittently for 30 days with fPth1 [30 μg–1000 μg/kg body weight (b.w.), (30fPth1–1000fPth1)] or hPTH [30 μg–100 μg/kg b.w. (30hPTH–100hPTH)]. In proximal tibiae at low doses, the fPth1 was positively correlated with trabecular bone volume/total volume (TbBV/TV) while hPTH increased TbBV/TV, trabecular thickness (TbTh) and trabecular number (TbN). 500fPth1 and 1000fPth1 increased TbBV/TV, TbTh, TbN, mineral apposition rate (MAR) and bone formation rate/bone surface (BFR/BS) with a concomitant decrease in osteoclast surface and number. In study 2 ovariectomized (OVX), osteopenic rats and sham operated (SHAM) rats were injected intermittently with 500 μg/kg b.w. of fPth1 (500fPth1) for 11 weeks. 500fPth1 treatment resulted in increased TbBV/TV (151%) and TbTh (96%) in the proximal tibiae due to increased bone formation as assessed by BFR/BS (490%) and MAR (131%). The effect was restoration of TbBV/TV to SHAM levels without any effect on bone resorption. 500fPth1 also increased TbBV/TV and TbTh in the vertebrae (L6) and cortical thickness in the mid-femora increasing bone strength at these sites. fPth1 was similarly effective in SHAM rats. Notwithstanding the low amino acid sequence homology with hPTH (1–34), we have clearly established the efficacy of fPth1 (1–34) as an anabolic bone agent.
Resumo:
Previous research has shown that the stress hormone corticosterone can increase depressive and anxiety-like behavior in rats as well as dampen the HPA response to a novel stressor (Kalynchuk et aI., 2004; Johnson et aI., 2006). Several studies have also shown that adolescence is a period of increased sensitivity to the negative effects of stressors (reviewed in McCormick et aI., 2010), which are often the result of exposure to corticosterone, and yet there is no research to date examining the effects of corticosterone administration during adolescence. The purpose of these experiments is to determine both the immediate and enduring effects of prolonged exposure to corticosterone in adolescence and adulthood on anxiety-like behavior, depressive behavior, and the HPA response. In Experiment 1 adolescent and adult rats were administered an injection of 40 mg/kg of corticosterone or vehicle daily for 16 days. Ha l f of the rats were then tested on the elevated plus maze (EPM) one day after their last injection, and the following day were tested on the forced swim test (FST). After the FST, which is a stressor, blood samples were collected at three time points, and the plasma concentrations of corticosterone were determined using a radioimmunoassay. The remaining rats were left undisturbed for three weeks, and then underwent the same testing as the first group. Corticosterone treatment had little effect on anxiety-like and depressive behavior, but it did alter the HPA response to the FST. In those rats tested soon after the period of injections, corticosterone dampened the HPA response as compared to vehicle treated rats in both adolescent and adult treated rats. For the adolescent treated rats that were tested several weeks later, corticosterone treatment increased HPA response as compared to the vehicle treated rats, but the same was not true for the adult treated rats. I t was hypothesized that the lack of behavioral effects of the corticosterone treatment may be the result of the vehicle injections inducing a stress response and thereby both groups would have similarly altered behavior. In Experiment 2 rats were administered corticosterone dissolved in their drinking water with 2.5% ethanol, or jus t the 2.5% ethanol or plain water, to determine the effects of corticosterone treatment without a stressor present. The regular drinking water was replaced with treated water for 16 days either during adulthood or adolescence, and as before, rats were either tested in the FST one day after the water was removed or three weeks later. Again there was no effect of treatment on depressive behavior. Similar to what was observed in Experiment 1, corticosterone treatment dampened the HPA response to a stressor for the rats tested soon after the treatment period. However, in Experiment 2 there was no effect of treatment on HPA response in those rats tested several weeks after they were treated. These results indicate that corticosterone can have a lasting effect on the HPA when administered in adolescence by injections but not in drinking water, which is likely because of the different schedules of exposure and rates of absorption between the two administration methods.
Resumo:
Once thought to occur only during specific periods of development, it is now clear that neurogenesis occurs in the rat hippocampus into adulthood. It is wellestablished that stress during adulthood decreases the rate of neurogenesis, but during adolescence, the effects of stress are much less understood. I investigated the effect of short-term or chronic stress during adolescence (daily lhr isolation and change of cage partner from postnatal day (PND) 30-32 or 30-45) on hippocampal neurogenesis. In experiment 1, rats were administered Bromodeoxyuridine (BrdU) daily on PND 30-32, or 46-48, to mark neurogenesis at the beginning of the stressor or after the stressor had ceased, respectively. Neither short-term nor chronic stress had an effect on proliferation or survival (evidenced by BrdU and Doublecortin (Dcx) immunohistochemistry respectively) of cells born at the beginning of the stress procedure. Compared to controls, BrdU-labeling showed chronic stress significantly increased proliferation of cells generated after the stressor had ceased, but survival of new neurons was not supported (Dcx-Iabeling). However, it may be that BrdU injections are inherently stressful. In experiment 2, the stressor (described above) was applied in the absence of BrdU injections. Ki67 (a marker of proliferation) showed that stress transiently increased cell proliferation. Dcx-Iabeling showed that stress also increased neuron survival into adulthood. Labeling with OX.,.42 (a marker of macro phages) suggested that the immune system plays a role in neurogenesis, as stress transiently decreased the number of activated microglia in the hippocampus. It can be concluded that in the adolescent male rat, chronic mild stress increases neurogenesis.
Resumo:
Adult male hooded Lister rats were either fed a diet containing 150 microg/g soya phytoestrogens or a soya-free diet for 18 days. This concentration of phytoestrogens should have been sufficient to occupy the oestrogen-beta, but not the oestrogen-alpha, receptors. Using in situ hybridisation, significant reductions were found in brain-derived neurotrophic factor (BDNF) mRNA expression in the CA3 and CA4 region of the hippocampus and in the cerebral cortex in the rats fed the diet containing phytoestrogens, compared with those on the soya-free diet. No changes in glutamic acid decarboxylase-67 or glial fibrillary acidic protein mRNA were found. This suggests a role for oestrogen-beta receptors in regulating BDNF mRNA expression.
Resumo:
To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and L-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of L-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Lycopene is a natural carotenoid, free radical scavenger, and presents protective effects by inhibiting oxidative DNA damage. The objective of the current study was to investigate the cytogenetic effects of a single acute and four daily gavage administrations of lycopene, and to examine possible protective effects on chromosomal damage induced by the antitumor drug cisplatin (cDDP) in rat bone marrow cells. The animals were divided into treatment groups, with three lycopene doses in the acute treatment (2, 4, and 6 mg/kg b.w.), three lycopene doses in the subacute treatment (0.5, 1.0, and 1.5 mg/kg b.w.) with and without cDDP (5 mg/kg b.w. i.p.), and respective controls. The results indicated that lycopene is neither cytotoxic nor clastogenic when compared with the negative controls (P > 0.01). cDDP-treated animals submitted to acute and subacute treatments with different lycopene doses showed a significant reduction (p < 0.01) in the number of abnormal metaphases when compared with the animals treated only with cDDP. The protective effects of lycopene on cDDP-induced chromosomal damage may be attributed to its antioxidant activity. These results suggest that this carotenoid may prove useful in reducing some of the toxic effects associated with certain classes of chemotherapeutic agents. (c) 2006 Elsevier Ltd. All rights reserved.
Semen parameters, fertility and testosterone levels in male rats exposed prenatally to betamethasone
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)