994 resultados para MAJOR CLADES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites + Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus + termites), and a further series of compensatory base changes in this stem loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae + Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive sequence comparison of the chloroplast ndhF gene from all major clades of the largest flowering plant family (Asteraceae) shows that this gene provides approximately 3 times more phylogenetic information than rbcL. This is because it is substantially longer and evolves twice as fast. The 5' region (1380 bp) of ndhF is very different from the 3' region (855 bp) and is similar to rbcL in both the rate and the pattern of sequence change. The 3' region is more A+T-rich, has higher levels of nonsynonymous base substitution, and shows greater transversion bias at all codon positions. These differences probably reflect different functional constraints on the 5' and 3' regions of ndhF. The two patterns of base substitutions of ndhF are particularly advantageous for phylogenetic reconstruction because the conserved and variable segments can be used for older and recent groups, respectively. Phylogenetic analyses of 94 ndhF sequences provided much better resolution of relationships than previous molecular and morphological phylogenies of the Asteraceae. The ndhF tree identified five major clades: (i) the Calyceraceae is the sister family of Asteraceae; (ii) the Barnadesioideae is monophyletic and is the sister group to the rest of the family; (iii) the Cichorioideae and its two basal tribes Mutisieae and Cardueae are paraphyletic; (iv) four tribes of Cichorioideae (Lactuceae, Arctoteae, Liabeae, and Vernonieae) form a monophyletic group, and these are the sister clade of the Asteroideae; and (v) the Asteroideae is monophyletic and includes three major clades.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With well over 700 species, the Tribe Dacini is one of the most species-rich clades within the dipteran family Tephritidae, the true fruit flies. Nearly all Dacini belong to one of two very large genera, Dacus Fabricius and Bactrocera Macquart. The distribution of the genera overlap in or around the Indian subcontinent, but the greatest diversity of Dacus is in Africa and the greatest diversity of Bactrocera is in south-east Asia and the Pacific. The monophyly of these two genera has not been rigorously established, with previous phylogenies only including a small number of species and always heavily biased to one genus over the other. Moreover, the subgeneric taxonomy within both genera is complex and the monophyly of many subgenera has not been explicitly tested. Previous hypotheses about the biogeography of the Dacini based on morphological reviews and current distributions of taxa have invoked an out-of-India hypothesis; however this has not been tested in a phylogenetic framework. We attempted to resolve these issues with a dated, molecular phylogeny of 125 Dacini species generated using 16S, COI, COII and white eye genes. The phylogeny shows that Bactrocera is not monophyletic, but rather consists of two major clades: Bactrocera s.s. and the ‘Zeugodacus group of subgenera’ (a recognised, but informal taxonomic grouping of 15 Bactrocera subgenera). This ‘Zeugodacus’ clade is the sister group to Dacus, not Bactrocera and, based on current distributions, split from Dacus before that genus moved into Africa. We recommend that taxonomic consideration be given to raising Zeugodacus to genus level. Supportive of predictions following from the out-of-India hypothesis, the first common ancestor of the Dacini arose in the mid-Cretaceous approximately 80 mya. Major divergence events occurred during the Indian rafting period and diversification of Bactrocera apparently did not begin until after India docked with Eurasia (50–35 mya). In contrast, diversification in Dacus, at approximately 65 mya, apparently began much earlier than predicted by the out-of-India hypothesis, suggesting that, if the Dacini arose on the Indian plate, then ancestral Dacus may have left the plate in the mid to late Cretaceous via the well documented India–Madagascar–Africa migration route. We conclude that the phylogeny does not disprove the predictions of an out-of-India hypothesis for the Dacini, although modification of the original hypothesis is required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hitherto, the Malaconothridae contained Malaconothrus Berlese, 1904 and Trimalaconothrus Berlese, 1916, defined by the possession of one pre-tarsal claw (monodactyly) or by three claws (tridactyly) respectively. However, monodactyly is a convergent apomorphy within the Oribatida and an unreliable character for a classification. Therefore we undertook a phylogenetic analysis of 102 species as the basis for a taxonomic review of the Malaconothridae. We identified two major clades, equivalent to the genera Tyrphonothrus Knülle, 1957 and Malaconothrus. These genera are redefined. Trimala-conothrus becomes the junior subjective synonym of Malaconothrus. Some 42 species of Trimalaconothrus are recom-bined to Malaconothrus and 15 species to Tyrphonothrus. Homonyms created by the recombinations are rectified. The replacement name M. hammerae nom. nov. is proposed for M. angulatus Hammer, 1958, the junior homonym of M. an-gulatus (Willmann, 1931) and the replacement name M. luxtoni nom. nov. is proposed for M. scutatus Luxton, 1987, the junior homonym of M. scutatus Mihelč ič, 1959. Trimalaconothrus iteratus Subías, 2004 is an unnecessary replacement name and is a junior objective synonym of Malaconothrus longirostrum (Hammer 1966). Malaconothrus praeoccupatus Subías, 2004 is a junior objective synonym of M. machadoi Balogh & Mahunka, 1969. Malaconothrus obsessus (Subías, 2004), an unnecessary replacement name for Trimalaconothrus albulus Hammer 1966 sensu Tseng 1982, becomes an available name for what is in fact a previously-undescribed species of Malaconothrus. We describe four new species of Tyrphonothrus: T. gnammaensis sp. nov. from Western Australia, T. gringai sp. nov. and T. maritimus sp. nov. from New South Wales, and T. taylori sp. nov. from Queensland. We describe six new species of Malaconothrus: M. beecroftensis sp. nov., M. darwini sp. nov. M. gundungurra sp. nov. and M. knuellei sp. nov. from New South Wales, M. jowettae sp. nov. from Norfolk Island, and M. talaitae sp. nov. from Victoria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of pathogenic and endophytic species of Phyllosticta on cultivated Citrus in Australia was investigated by DNA sequence analysis of specimens held in plant pathology herbaria and culture collections. Sequences of the internal transcribed spacer region (ITS1, 5.8S, ITS2), and partial translation elongation factor 1-alpha (TEF) gene of 41 Phyllosticta-like isolates from Citrus were compared to those sequences from the type specimens of Phyllosticta recorded from around the world. Phylogenetic analysis resolved all the sequences of Australian accessions into two major clades. One clade corresponded to P. citricarpa, which causes citrus black spot disease. The other clade contained P. capitalensis, which is a known endophyte of Citrus and many other plant species. All included herbarium accessions previously designated as Guignardia mangiferae are now designated P. capitalensis. No Australian isolates were identified as the newly described pathogens of citrus P. citriasiana or P. citrichinaensis, or the endophytes Guignarida mangiferae, P. brazilianiae, or P. citribraziliensis. © 2013 Australasian Plant Pathology Society Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Birds represent the most diverse extant tetrapod clade, with ca. 10,000 extant species, and the timing of the crown avian radiation remains hotly debated. The fossil record supports a primarily Cenozoic radiation of crown birds, whereas molecular divergence dating analyses generally imply that this radiation was well underway during the Cretaceous. Furthermore, substantial differences have been noted between published divergence estimates. These have been variously attributed to clock model, calibration regime, and gene type. One underappreciated phenomenon is that disparity between fossil ages and molecular dates tends to be proportionally greater for shallower nodes in the avian Tree of Life. Here, we explore potential drivers of disparity in avian divergence dates through a set of analyses applying various calibration strategies and coding methods to a mitochondrial genome dataset and an 18-gene nuclear dataset, both sampled across 72 taxa. Our analyses support the occurrence of two deep divergences (i.e., the Palaeognathae/Neognathae split and the Galloanserae/Neoaves split) well within the Cretaceous, followed by a rapid radiation of Neoaves near the K-Pg boundary. However, 95% highest posterior density intervals for most basal divergences in Neoaves cross the boundary, and we emphasize that, barring unreasonably strict prior distributions, distinguishing between a rapid Early Paleocene radiation and a Late Cretaceous radiation may be beyond the resolving power of currently favored divergence dating methods. In contrast to recent observations for placental mammals, constraining all divergences within Neoaves to occur in the Cenozoic does not result in unreasonably high inferred substitution rates. Comparisons of nuclear DNA (nDNA) versus mitochondrial DNA (mtDNA) datasets and NT- versus RY-coded mitochondrial data reveal patterns of disparity that are consistent with substitution model misspecifications that result in tree compression/tree extension artifacts, which may explain some discordance between previous divergence estimates based on different sequence types. Comparisons of fully calibrated and nominally calibrated trees support a correlation between body mass and apparent dating error. Overall, our results are consistent with (but do not require) a Paleogene radiation for most major clades of crown birds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The giant freshwater prawn (Macrobrachium rosenbergii) is cultured widely around the world but little is known about the levels and patterns of genetic diversity in either wild or cultured stocks. Studies have suggested that genetic diversity may be relatively low in some cultured stocks due to the history of how they were founded and subsequent exposure to repeated population bottlenecks in hatcheries. In contrast, wild stocks have an extensive distribution that extends from Southern Asia across Southeast (SE) Asia to the Pacific region. Therefore, wild stocks could be an important resource for genetic improvement of culture stocks in the future. Understanding the extent and patterns of genetic diversity in wild giant freshwater prawn stocks will assist decisions about the direction future breeding programs may take. Wild stock genetic diversity was examined using a 472 base-pair segment of the 16S rRNA gene in 18 wild populations collected from across the natural range of the species. Two major clades ("eastern" and "western") were identifi ed either side of Huxley’s line, with a minimum divergence of 6.2 per cent, which implies separation since the Miocene period (5-10 MYA). While divergence estimates within major clades was small (maximum 0.9 per cent), evidence was also found for population structuring at a lower spatial scale. This will be examined more intensively with a faster evolving mtDNA gene in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the phylogenetic relationships among most Chinese species of lizards in the genus Phrynocephalus (118 individuals, collected from 56 populations of 14 well-defined species and several unidentified specimens) using four mitochondrial gene fragments (12S rRNA, 16S rRNA, cytochrome b, and ND4-tRNA(LEU)). The partition-homogeneity tests indicated that the combined dataset was homogeneous, and maximum-parsimony (MP), neighbor-joining (NJ), maximum-likelihood (ML) and Bayesian (BI) analyses were performed on this combined dataset (49 haplotypes including outgroups for 2058 bp in total). The maximum-parsimony analysis resulted in 24 equally parsimonious trees, and their strict consensus tree shows that there are two major clades representing the Chinese Phrynocephalus species: the viviparous group (Clade A) and the oviparous group (Clade B). The trees derived from Bayesian, ML. and NJ analyses were topologically identical to the MP analysis except for the position of P. mystaceus. All analyses left the nodes for the oviparous group, the most basal clade within the oviparous group, and P. mystaceus unresolved. The phylogenies further suggest that the monophyly of the viviparous species may have resulted from vicariance, while recent dispersal may have been important in generating the pattern of variation among the oviparous species. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

More than 10 species within the freshwater fish genus Sinoncyclocbeilus adapt to caves and show different degrees of degeneration of eyes and pigmentation. Therefore, this genus can be useful for studying evolutionary developmental mechanisms, role of natural selection and adaptation in cave animals. To better understand these processes, it is indispensable to have background knowledge about phylogenetic relationships of surface and cave species within this genus. To investigate phylogenetic relationships among species within this genus, we determined nucleotide sequences of complete mitochondrial cytochrome b gene (1140 bp) and partial ND4 gene (1032 bp) of 31 recognized ingroup species and one outgroup species Barbodes laticeps. Phylogenetic trees were reconstructed using maximum parsimony. Bayesian, and maximum likelihood analyses. Our phylogenetic results showed that all species except for two surface species S. jii and S. macrolepis clustered as five major monophyletic clades (I, II, III, IV, and V) with strong supports. S. jii was the most basal species in all analyses, but the position of S. macrolepis was not resolved. The cave species were polyphyletic and occurred in these five major clades. Our results indicate that adaptation to cave environments has occurred multiple times during the evolutionary history of Sinocyclocheilus. The branching orders among the clades I, II, III, and IV were not resolved, and this might be due to early rapid radiation in Sinocyclocheilus. All species distributed in Yunnan except for S. rhinocerous and S. hyalinus formed a strongly supported monophyletic group (clade V), probably reflecting their common origins. This result suggested that the diversification of Sinocyclocheilus in Yunnan may correlate with the uplifting of Yunnan Plateau. © 2005 Published by Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The Galliformes is a well-known and widely distributed Order in Aves. The phylogenetic relationships of galliform birds, especially the turkeys, grouse, chickens, quails, and pheasants, have been studied intensively, likely because of their close association with humans. Despite extensive studies, convergent morphological evolution and rapid radiation have resulted in conflicting hypotheses of phylogenetic relationships. Many internal nodes have remained ambiguous. Results: We analyzed the complete mitochondrial (mt) genomes from 34 galliform species, including 14 new mt genomes and 20 published mt genomes, and obtained a single, robust tree. Most of the internal branches were relatively short and the terminal branches long suggesting an ancient, rapid radiation. The Megapodiidae formed the sister group to all other galliforms, followed in sequence by the Cracidae, Odontophoridae and Numididae. The remaining clade included the Phasianidae, Tetraonidae and Meleagrididae. The genus Arborophila was the sister group of the remaining taxa followed by Polyplectron. This was followed by two major clades: ((((Gallus, Bambusicola) Francolinus) (Coturnix, Alectoris)) Pavo) and (((((((Chrysolophus, Phasianus) Lophura) Syrmaticus) Perdix) Pucrasia) (Meleagris, Bonasa)) ((Lophophorus, Tetraophasis) Tragopan))). Conclusions: The traditional hypothesis of monophyletic lineages of pheasants, partridges, peafowls and tragopans was not supported in this study. Mitogenomic analyses recovered robust phylogenetic relationships and suggested that the Galliformes formed a model group for the study of morphological and behavioral evolution.