880 resultados para MAGNETIC-RESONANCE IMAGES
Resumo:
The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Segmentation of medical imagery is a challenging problem due to the complexity of the images, as well as to the absence of models of the anatomy that fully capture the possible deformations in each structure. Brain tissue is a particularly complex structure, and its segmentation is an important step for studies in temporal change detection of morphology, as well as for 3D visualization in surgical planning. In this paper, we present a method for segmentation of brain tissue from magnetic resonance images that is a combination of three existing techniques from the Computer Vision literature: EM segmentation, binary morphology, and active contour models. Each of these techniques has been customized for the problem of brain tissue segmentation in a way that the resultant method is more robust than its components. Finally, we present the results of a parallel implementation of this method on IBM's supercomputer Power Visualization System for a database of 20 brain scans each with 256x256x124 voxels and validate those against segmentations generated by neuroanatomy experts.
Resumo:
Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.
Resumo:
Permutation tests are useful for drawing inferences from imaging data because of their flexibility and ability to capture features of the brain that are difficult to capture parametrically. However, most implementations of permutation tests ignore important confounding covariates. To employ covariate control in a nonparametric setting we have developed a Markov chain Monte Carlo (MCMC) algorithm for conditional permutation testing using propensity scores. We present the first use of this methodology for imaging data. Our MCMC algorithm is an extension of algorithms developed to approximate exact conditional probabilities in contingency tables, logit, and log-linear models. An application of our non-parametric method to remove potential bias due to the observed covariates is presented.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.
Resumo:
Accurate and automated methods for measuring the thickness of human cerebral cortex could provide powerful tools for diagnosing and studying a variety of neurodegenerative and psychiatric disorders. Manual methods for estimating cortical thickness from neuroimaging data are labor intensive, requiring several days of effort by a trained anatomist. Furthermore, the highly folded nature of the cortex is problematic for manual techniques, frequently resulting in measurement errors in regions in which the cortical surface is not perpendicular to any of the cardinal axes. As a consequence, it has been impractical to obtain accurate thickness estimates for the entire cortex in individual subjects, or group statistics for patient or control populations. Here, we present an automated method for accurately measuring the thickness of the cerebral cortex across the entire brain and for generating cross-subject statistics in a coordinate system based on cortical anatomy. The intersubject standard deviation of the thickness measures is shown to be less than 0.5 mm, implying the ability to detect focal atrophy in small populations or even individual subjects. The reliability and accuracy of this new method are assessed by within-subject test–retest studies, as well as by comparison of cross-subject regional thickness measures with published values.
Resumo:
Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To quantify the uncertainties of carotid plaque morphology reconstruction based on patient-specific multispectral in vivo magnetic resonance imaging (MRI) and their impacts on the plaque stress analysis. Materials and Methods: In this study, three independent investigators were invited to reconstruct the carotid bifurcation with plaque based on MR images from two subjects to study the geometry reconstruction reproducibility. Finite element stress analyses were performed on the carotid bifurcations, as well as the models with artificially modified plaque geometries to mimic the image segmentation uncertainties, to study the impacts of the uncertainties to the stress prediction. Results: Plaque reconstruction reproducibility was generally high in the study. The uncertainties among interobservers are around one or the subpixel level. It also shows that the predicted stress is relatively less sensitive to the arterial wall segmentation uncertainties, and more affected by the accuracy of lipid region definition. For a model with lipid core region artificially increased by adding one pixel on the lipid region boundary, it will significantly increase the maximum Von Mises Stress in fibrous cap (>100%) compared with the baseline model for all subjects. Conclusion: The current in vivo MRI in the carotid plaque could provide useful and reliable information for plaque morphology. The accuracy of stress analysis based on plaque geometry is subject to MRI quality. The improved resolution/quality in plaque imaging with newly developed MRI protocols would generate more realistic stress predictions.
Resumo:
This paper describes a spatio-temporal registration approach for speech articulation data obtained from electromagnetic articulography (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is motivated by the potential for combining the complementary advantages of both types of data. The registration method is validated on EMA and rtMRI datasets obtained at different times, but using the same stimuli. The aligned corpus offers the advantages of high temporal resolution (from EMA) and a complete mid-sagittal view (from rtMRI). The co-registration also yields optimum placement of EMA sensors as articulatory landmarks on the magnetic resonance images, thus providing richer spatio-temporal information about articulatory dynamics. (C) 2014 Acoustical Society of America
Resumo:
To evaluate variations of some anatomic structures of sellar and parasellar regions and their possible differences between genders and age groups. Magnetic resonance images (MRI) of 380 patients were performed to analyze the dimensions of the sphenoid sinus, pituitary gland, optic chiasm, intra-cavernous carotid distances, distance between columella nasal - sphenoid sinus; and columella nasal-pituitary gland. The patients age ranged between 20 and 80 years (mean age 48 years). The study included 235 females (mean age 53 years) and 145 males (mean age 40 years). The transverse length of the pituitary, the inter-carotid distance and the height of the pituitary were similar between genders and age groups. The width and height of the optic chiasm showed differences only between females of different ages. Males presented greater distances between nasal columella and sphenoid sinus. The most common type of pneumatization of the sphenoid sinus was the sellar, and depending on the age group, sphenoid sinus was larger in males than females. The anatomy of the Sellar and parasellar regions is complex and varies widely within the normal range. They are a small area, rich in anatomical details affecting multiple physiological systems in the body and, therefore, have great importance in several medical fields. A better understanding of these complex structures is essential in clinical diagnosis and treatment of disease.
Resumo:
OBJECTIVE In contrast to conventional breast imaging techniques, one major diagnostic benefit of breast magnetic resonance imaging (MRI) is the simultaneous acquisition of morphologic and dynamic enhancement characteristics, which are based on angiogenesis and therefore provide insights into tumor pathophysiology. The aim of this investigation was to intraindividually compare 2 macrocyclic MRI contrast agents, with low risk for nephrogenic systemic fibrosis, in the morphologic and dynamic characterization of histologically verified mass breast lesions, analyzed by blinded human evaluation and a fully automatic computer-assisted diagnosis (CAD) technique. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. In this prospective, single-center study, 45 women with 51 histopathologically verified (41 malignant, 10 benign) mass lesions underwent 2 identical examinations at 1.5 T (mean time interval, 2.1 days) with 0.1-mmol kg doses of gadoteric acid and gadobutrol. All magnetic resonance images were visually evaluated by 2 experienced, blinded breast radiologists in consensus and by an automatic CAD system, whereas the morphologic and dynamic characterization as well as the final human classification of lesions were performed based on the categories of the Breast imaging reporting and data system MRI atlas. Lesions were also classified by defining their probability of malignancy (morpho-dynamic index; 0%-100%) by the CAD system. Imaging results were correlated with histopathology as gold standard. RESULTS The CAD system coded 49 of 51 lesions with gadoteric acid and gadobutrol (detection rate, 96.1%); initial signal increase was significantly higher for gadobutrol than for gadoteric acid for all and the malignant coded lesions (P < 0.05). Gadoteric acid resulted in more postinitial washout curves and fewer continuous increases of all and the malignant lesions compared with gadobutrol (CAD hot spot regions, P < 0.05). Morphologically, the margins of the malignancies were different between the 2 agents, whereas gadobutrol demonstrated more spiculated and fewer smooth margins (P < 0.05). Lesion classifications by the human observers and by the morpho-dynamic index compared with the histopathologic results did not significantly differ between gadoteric acid and gadobutrol. CONCLUSIONS Macrocyclic contrast media can be reliably used for breast dynamic contrast-enhanced MRI. However, gadoteric acid and gadobutrol differed in some dynamic and morphologic characterization of histologically verified breast lesions in an intraindividual, comparison. Besides the standardization of technical parameters and imaging evaluation of breast MRI, the standardization of the applied contrast medium seems to be important to receive best comparable MRI interpretation.